Skip to main content
Log in

The starved colon—Diminished mucosal nutrition, diminished absorption, and colitis

  • Original Contributions
  • Published:
Diseases of the Colon & Rectum

Abstract

Nutrition of colonic epithelial cells is mainly from short chain fatty acids (SCFAs) produced by bacterial fermentation in the colonic lumen. n-Butyrate contributes more carbon of oxidation to epithelial cells than glucose or glutamine from the vasculature. Incomplete starvation of colonic epithelial cells through lack of luminal SCFAs leads, in the short term, to mucosal hypoplasia with either diminished absorption or diarrhea. A chronic lack of SCFAs or complete organ starvation in conjunction with other factors leads to nutritional colitis, either “diversion colitis” or “starvation colitis”. Whether predominantly diarrhea or colitis develops in mucosal malnutrition appears to depend upon the severity and duration of starvation. Ulcerative colitis may be classified as a nutritional colitis in that colonic epithelial cells are unable to utilize SCFAs reflecting epithelial starvation despite abundant SCFAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sandford PA. Carbohydrate biochemistry of the intestinal epithelial cell. Modern Trends in Gastroenterology. 1970;4:42–59.

    Google Scholar 

  2. Windemueller HG, Spaeth AE. Identification of ketone bodies and glutamine as the major respiratory fuel in vivo for post absorptive small intestine. J Biol Chem 1978;253:69–76.

    Google Scholar 

  3. Watford M, Lund P, Krebs HA. Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem J 1979;178:589–96.

    PubMed  CAS  Google Scholar 

  4. Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the clonic mucosa in man. Gut 1980;21:793–8.

    PubMed  CAS  Google Scholar 

  5. Bugaut M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol 1987;86B:439–72.

    CAS  Google Scholar 

  6. Roediger WE, Deakin EJ, Radcliffe BC, Nance S. Anion control of sodium absorption in the colon. Q J Exp Physiol 1986;71:195–204.

    PubMed  CAS  Google Scholar 

  7. Roediger WE. Metabolic basis of starvation diarrhoea: implications for treatment. Lancet 1986;1:1082–4.

    PubMed  CAS  Google Scholar 

  8. Firmansyah A, Suwandito L, Penn D, Lebenthal E. Biochemical and morphological changes in the digestive tract of rats after prenatal and postnatal malnutrition. Am J Clin Nutr 1989;50:261–8.

    PubMed  CAS  Google Scholar 

  9. Morin CL, Ling V, Bourassa D. Small intestinal and colonic changes induced by a chemically defined diet. Dig Dis Sci 1980;25:123–8.

    PubMed  CAS  Google Scholar 

  10. Brieger L. Ueber die fluchtigen Bestandtheile der menschlichen Excremente. J Prak Chem 1878;17:124–38.

    Google Scholar 

  11. Bahrdt H, Bamberg K. Untersuchungen uber die Pathogenese der Verdauungstorung im Sauglingsalter. III Tierversuche uber die Wirkung nieder organischer Sauren auf die Peristaltik. Z Kinderheil 1912;3:322–49.

    CAS  Google Scholar 

  12. Bahrdt H, McLean S. Untersuchungen uber die pathogenese der Verdauungsstorung in Sauglingsalter. VIII Uber die fluchtigen Fettsauren im Darm gesunder und magen-darmkranker Sauglinge und ihre Beziehungen zu den Stoffwechselstorungen. Z. Kinderheil 1914;11:143–78.

    Google Scholar 

  13. Kamath PS, Phillips SF, Zinsmeister AR. Short chain fatty acids stimulate ileal motility in humans. Gastroenterology 1988;95:1496–1502.

    PubMed  CAS  Google Scholar 

  14. Grove EW, Olmsted WH, Koenig K. The effect of diet and catharsis on the lower volatile fatty acids in stools of normal men. J Biol Chem 1929;85:115–26.

    Google Scholar 

  15. Barcroft J, McAnally RA, Phillipson AT. Absorption of volatile acids from the alimentary tract of the sheep and other animals. J Exp Biol 1944;20:120–9.

    CAS  Google Scholar 

  16. Ruppin H, Bar-Meir S, Soergel KH, Wood CM, Schmitt JR. Absorption of short chain fatty acids by the colon. Gastroenterology 1980;78:1500–07.

    PubMed  CAS  Google Scholar 

  17. Roediger WE, Moore A. Effect of short chain fatty acid on sodium absorption in isolated human colon perfused through the vascular tract. Dig Dis Sci 1981;26:100–06.

    PubMed  CAS  Google Scholar 

  18. Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1982;83:424–9.

    PubMed  CAS  Google Scholar 

  19. Roediger WE. Short chain fatty acids as metabolic regulators of ion absorption in the colon. Acta Vet Scand 1989;86:116–25.

    CAS  Google Scholar 

  20. Roediger WE, Nance S. Selective reduction of fatty acid oxidation in colonocytes: correlation with ulcerative colitis. Lipids (submitted for publication).

  21. Charney AN, Egnor RW. Membrane site of action of CO2 on colonic sodium absoption. Am J Physiol 1989;256:C584–90.

    PubMed  CAS  Google Scholar 

  22. Levin RJ, Nzegwu HC, Young A. Proximal colon secretion in fed and fasted rats. J Physiol 1988;396:33P.

    Google Scholar 

  23. Thaysen EH, Thaysen JH. Hunger diarrhoea. Acta Med Scand 1952;Suppl 274:124–60.

    Google Scholar 

  24. Firmansyah A, Penn D, Suwandito L, Tano M, Lebenthal D. Decreased basal and n-butyrate stimulated colonic water and electrolyte transport in the pre and postnatally malnourished rat. (Submitted).

  25. Loeschke K, Gordon HA. Water movement across the cecal wall of the germ free rat. Proc Soc Exp Biol Med 1969;133:1217–22.

    Google Scholar 

  26. Roediger WE, Rae DA. Trophic effect of short chain fatty acids on mucosal handling of ions by the defunctioned colon. Br J Surg 1982;69:23–5.

    PubMed  CAS  Google Scholar 

  27. Tilson MD, Fellner BJ, Wright HK. A possible explanation for post operative diarrhoea after colostomy closure. Am J Surg 1976;131:94–7.

    PubMed  CAS  Google Scholar 

  28. Gompertz D, Brooks AP, Gaya H, Spiers ASD. Volatile fatty acids in the faeces of patients in “germ-free” isolation. Gut 1973;14:183–6.

    PubMed  CAS  Google Scholar 

  29. Leegwater DC, DeGroot AP, Van Kalmthout-Kuyper M. The aetiology of caecal enlargement in the rat. Fd Cosmet Toxicol 1974;12:687–97.

    CAS  Google Scholar 

  30. Illman RJ, Topping DL, Trimble RP. Effects of food restriction and starvation-refeeding on volatile fatty acid concentrations in the rat. J Nutr 1986;116:1694–1700.

    PubMed  CAS  Google Scholar 

  31. Firmansyah A, Penn D, Lebenthal E. Metabolism of glucose, glutamine, n-butyrate, Β-hydroxybutyrate in isolated rat colonocyte following acute fasting and chronic malnutrition. Gastroenterology 1989;97:622–9.

    PubMed  CAS  Google Scholar 

  32. Berger EY, Kanzakig Homer MA. Simultaneous flux of sodium into and out of the dog intestine. Am J Physiol 1959;196:74–82.

    PubMed  CAS  Google Scholar 

  33. Arnold D. Famine: social crises and historical change. Oxford: Blackwell, 1988.

    Google Scholar 

  34. Hehir P. Effects of chronic starvation during the siege of Kut. Br Med J 1922;1:865–8.

    PubMed  Google Scholar 

  35. Kenny S. Diet for malnourished prisoners of war. Br Med J 1945;1:777–8.

    Article  PubMed  Google Scholar 

  36. Sheppach W, Sachs M, Bartram P, Kasper H. Faecal short chain fatty acids after colonic surgery. Eur J Clin Nutr 1989;43:21–5.

    Google Scholar 

  37. Mortensen PB, Hegnhoj J, Rannem T, Rasmussen HS, Holtug K. Short-chain fatty acids in bowel contents after intestinal surgery. Gastroenterology 1989;97:1090–96.

    PubMed  CAS  Google Scholar 

  38. Cummings JH, James WP, Wiggins HS. Role of the colon in ileal resection diarrhoea. Lancet 1973;1:344–7.

    PubMed  CAS  Google Scholar 

  39. Glotzer DJ, Glick ME, Goldman H. Proctitis and colitis following diversion of the faecal stream. Gastroenterology 1981;80:438–41.

    PubMed  CAS  Google Scholar 

  40. Harig JM, Soergel KH, Komorowski RA, Wood CM. Treatment of diversion colitis with short chain fatty acid irrigation. N Engl J Med 1989;320:23–8.

    Article  PubMed  CAS  Google Scholar 

  41. Neut C, Colombel JF, Guillemot F, et al. Impaired bacterial flora in human excluded colon. Gut 1989;30:1094–8.

    PubMed  CAS  Google Scholar 

  42. Editorial. Diversion colitis. Lancet 1989;1:764.

  43. Quattrochi S. Alterazioni del tubo gastroenterico. Pediatria 1901;9:49–64.

    Google Scholar 

  44. Roediger WE. The role of colonic mucosal metabolism in the pathogenesis of ulcerative colitis. In: Goebell A, Peskar BM, Malchow H, eds. Inflammatory bowel diseases—basic research and clinical implications. Lancaster: MTP Press, 1988:69–78.

    Google Scholar 

  45. Truelove SC, Ellis H, Webster CU. Place of double-barrelled ileostomy in ulcerative colitis and Crohn's disease of the colon. Br Med J 1965;1:150–3.

    Article  PubMed  CAS  Google Scholar 

  46. Harper PH, Truelove Lee EC. Split ileostomy and ileocolostomy for Crohn's disease of the colon and ulcerative colitis: a 20 year survey. Gut 1983;24:106–13.

    PubMed  CAS  Google Scholar 

  47. Hashizume M, Takano H, Sugimachi K. Corticosteroid administration via artificial caecal fistula in ulcerative colitis. Lancet 1989;2:515.

    PubMed  CAS  Google Scholar 

  48. Sakata T. Stimulatory effect of short chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br J Nutr 1987;58:95–103.

    PubMed  CAS  Google Scholar 

  49. Goodlad RA, Ratcliffe B, Fordham JP, Wright NA. Does dietary fibre stimulate intestinal epithelial cell proliferation in germ free rats? Gut 1989;30:820–5.

    PubMed  CAS  Google Scholar 

  50. Sakata T. Short chain fatty acids and water in the hindgut contents and faeces of rats after hindgut bypass surgery. Scand J Gastroenterol 1987;22:961–8.

    PubMed  CAS  Google Scholar 

  51. Appleton GV, Williamson RC. Hypoplasia of defunctioned rectum. Br J Surg 1989;76:787–9.

    PubMed  CAS  Google Scholar 

  52. Whitehead RH, Young GP, Bhathal PS. Effect of short chain fatty acids on a new human colon carcinoma cell line (LIM 1215). Gut 1986;27:1457–63.

    PubMed  CAS  Google Scholar 

  53. Caamano GJ, Iglesias J, Marco C, Linares A. In vivo utilization of [3-14C] acetoacetate for lipid and amino acid synthesis in the 15 day old chick. Comp Biochem Physiol 1988;91B:1–5.

    CAS  Google Scholar 

  54. Molla AM, Molla A, Nath SK, Khatun M. Food based oral rehydration salt solution for acute childhood diarrhea. Lancet 1989;2:429–31.

    PubMed  CAS  Google Scholar 

  55. Molla A, Molla A, Rohde J, Greenough WB. Turning off the diarrhoea: role of food and ORS. J Pediatr Gastroenterol Nutr 1989;8:81–4.

    Article  PubMed  CAS  Google Scholar 

  56. Carpenter CC, Greenough WB, Pierce NF. Oral rehydration therapy the role of polymeric substrates. N Engl J Med 1988;319:1346–8.

    Article  PubMed  CAS  Google Scholar 

  57. Taylor CE, Greenough WB. Control of diarrhoeal disease. Annu Rev Public Health 1989;10:221–44.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Roediger, W.E.W. The starved colon—Diminished mucosal nutrition, diminished absorption, and colitis. Dis Colon Rectum 33, 858–862 (1990). https://doi.org/10.1007/BF02051922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02051922

Key words

Navigation