Skip to main content
Log in

Determination of lithium in graphite by neutron activation analysis

  • Industry
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Trace impurities of lithium in graphite is one of the sources of tritium in high-temperature reactors. To determine contents of less then 1ng/g a procedure based on the (n,α)-reaction of6Li was developed. The samples are irradiated in a reactor and then ignited in a Wickbold apparatus. Thereby the tritium produced by the (n,α)-reaction is completely converted in HTO, which can be easily purified by distillation and, if necessary, by a scavenger precipitation step. Several types of graphite have been investigated and the lowest content measured was 0.2 ng/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. BONKA, B. BALTES Der Hochtemperaturreaktor mit Zwischenkreislauf, Prozeßwärme. Forschungsberichte des Landes Nordrhein-Westfalen, Westdeutscher Verlag 2626, 1977, p. 32.

  2. H. BONKA, in Behaviour of Tritium in the Environment, Proc. Symp. San Francisco, Oct. 16–20, 1978, International Atomic Energy Agency, Wien, 1979, p. 105.

    Google Scholar 

  3. B. VIALATTE, J. Radioanal. Chem., 8 (1971) 269.

    Google Scholar 

  4. C. S. SASTRI, R. CALETKA, V. KRIVAN, Anal. Chem., 53 (1981) 765.

    Google Scholar 

  5. C. S. SASTRI, R. CALETKA, V. KRIVAN, J. Radioanal. Chem., 70 (1982) 273.

    Google Scholar 

  6. J. R. McGINELY, E. A. SCHWEIKERT, Anal. Chem., 47 (1975) 2403.

    Google Scholar 

  7. R. G. OSMOND, A. A. SMALES, Anal. Chim. Acta, 10 (1954) 117.

    Google Scholar 

  8. L. N. JENKINS, A. A. SMALES, Quart. Rev. (London) 10 (1956) 83.

    Google Scholar 

  9. J. W. WINCHESTER, L. C. BATE, G. W. LEDDICOTTE, ORNL-CF-59-7-127, July 10, 1959.

  10. D. C. AUMANN, H. J. BORN, Radiochim. Acta, 3 (1964) 623.

    Google Scholar 

  11. G. W. SMITH, D. J. SANTELLI, H. FIESS, Anal. Chim. Acta, 33 (1965) 1.

    Google Scholar 

  12. K. NIKOLOV, D. TODOROVSKY, Isotopenpraxis, 5 (1969) 408.

    Google Scholar 

  13. H. WÄNKE, E. V. MONSE, Z. Naturforsch. 10a (1955) 667.

    Google Scholar 

  14. W. A. SEDLACEK, V. A. RYAN, Anal. Chem., 40 (1968) 678.

    Google Scholar 

  15. L. CLARK, Jr., N. C. RASMUSSEN, Trans. Am. Nucl. Soc., 6 (1963) 182.

    Google Scholar 

  16. W. HERR, Z. Naturforsch., 8a (1953) 305.

    Google Scholar 

  17. E. PICCIOTTO, M. van STYVENDAEL, Compt. Rend. Acad. Sci., 232 (1951) 855.

    Google Scholar 

  18. S. AMIEL, Y. WELWART, Anal. Chem., 35 (1963) 586.

    Google Scholar 

  19. H. R. LUKENS, V. P. GUINN in P. POLISHUK (Ed.), Nucleonics in Aerospace, Plenum Press, New York 1968, p. 314.

    Google Scholar 

  20. L. KAPLAN, K. E. WILZBACH, Anal. Chem., 26 (1954) 1797.

    Google Scholar 

  21. E. L. FIREMAN, D. SCHWARZER, Geochim. Cosmochim. Acta, 11 (1957) 252.

    Google Scholar 

  22. R. WICKBOLD, Angew. Chem., 64 (1952) 133.

    Google Scholar 

  23. G. ERDTMANN, Neutron Activation Tables, Verlag Chemie, Weinheim, 1976.

    Google Scholar 

  24. P. G. FISCHER, Jül-1238, 1975.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdtmann, G., Kröner, B. Determination of lithium in graphite by neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, Articles 113, 317–326 (1987). https://doi.org/10.1007/BF02050503

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02050503

Keywords

Navigation