Skip to main content
Log in

Morphology of dynamic graciloplasty compared with the anal sphincter

  • Original Contributions
  • Published:
Diseases of the Colon & Rectum

Abstract

Dynamic graciloplasty for fecal incontinence includes gracilis muscle transposition around the anal canal as a new sphincter and subsequent electrical stimulation. The aim of electrical stimulation is to transform the gracilis fast-twitch, “fatigue-prone” fibers into slow-twitch, “fatigue-resistant” fibers to achieve a sustained tonic contraction. The latter is considered essential for sphincter function. Therefore, the following features of transposed gracilis muscle morphology were studied in nine patients before and after electrical stimulation: 1) the percentage of Type I fibers, 2) the lesser diameter of these fibers, and 3) the positive collagen staining area. Furthermore, the external anal sphincter and gracilis muscle histology was investigated in six autopsy cases. The mean percentage of Type I, slow-twitch, fatigue-resistant fibers in transposed gracilis muscle increased from 46 percent before electrical stimulation to 64 percent (P <0.01, paired Student's t-test) after electrical stimulation. The mean lesser diameter of these fibers did not change significantly (from 32 to 29 μm), and the mean percentage of collagen increased from 4 percent before electrical stimulation to 7 percent (P <0.01) afterward. The external sphincter in cadavers demonstrated a predominance of Type I fibers (80 percent) with a lesser diameter of 23 μ m and a high percentage (12 percent) of collagen. Gracilis muscle histology was uniform at six different sample sites in these cadaver dissections. We conclude that electrical stimulation induces histologic changes in transposed gracilis muscle, allowing this muscle to function as an external anal sphincter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baeten C, Spaans F, Fluks A. An implanted neuromuscular stimulator for fecal continence following previously implanted gracilis muscle: report of a case. Dis Colon Rectum 1988;31:134–7.

    PubMed  Google Scholar 

  2. Baeten CG, Konsten J, Spaans F,et al. Dynamic graciloplasty for treatment of faecal incontinence. Lancet 1991, 338:1163–5.

    Article  PubMed  Google Scholar 

  3. Williams NS, Patel J, George RD, Hallan RI, Watkins ES. Development of an electrically stimulated neoanal sphincter. Lancet 1991;338:1166–9.

    Article  PubMed  Google Scholar 

  4. Pickrell KL, Broadbent TR, Masters FW, Metzger JT. Construction of a rectal sphincter and restoration of anal incontinence by transplanting gracilis muscle: a report of four cases in children. Ann Surg 1952;135:853–63.

    PubMed  Google Scholar 

  5. Enck P, Eggers E, Koletzko S, Erckenbrecht JF. Spontaneous variation of anal “resting” pressure in healthy humans. Am J Physiol 1991;261:G823–6.

    PubMed  Google Scholar 

  6. Buller AJ, Eccles JC, Eccles RM. Interactions between motorneurones and muscles in respect of the characteristic speeds of their responses. J Physiol 1960;150:417–39.

    PubMed  Google Scholar 

  7. Salmons S. The response of skeletal muscle to different patterns of use. Some new developments and concepts. In: Pette D, ed. Plasticity of muscle. Berlin: De Gruyter, 1980:387–400.

    Google Scholar 

  8. Pette D. Activity-induced fast to slow transitions in mammalian muscle. Med Sci Sports Exerc 1984;16:517–28.

    PubMed  Google Scholar 

  9. Pette D, Vrbova G. Invited review: neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve 1985;8:676–89.

    Article  PubMed  Google Scholar 

  10. Hallan RI, Williams NS, Hutton MR,et al. Electrically stimulated sartorius neosfincter: canine model of activation and skeletal muscle transformation. Br J Surg 1990;77:208–13.

    PubMed  Google Scholar 

  11. Havenith MG, Visser R, Schrijvers van Schendel JM, Bosman FT. Muscle fiber typing in routinely processed skeletal muscle with monoclonal antibodies. Histochemistry 1990;93:497–9.

    Article  PubMed  Google Scholar 

  12. Krimpen van C. Cardiac remodeling and angiotensin II after an experimental myocardial infarction (Thesis.) Dordrecht: ICG printing, 1991:40.

    Google Scholar 

  13. Dolber PC, Spach MS. Picrosirius red staining of cardiac muscle following phosphomolybdic acid treatment. Stain Technol 1987;62:23–6.

    PubMed  Google Scholar 

  14. Christiansen J, Sorenson M, Rasmussen OO. Gracilis muscle transposition for faecal incontinence. Br J Surg 1990;77:1039–40.

    PubMed  Google Scholar 

  15. Speakmann CT, Kamm MA. The internal anal sphincter—new insights into faecal incontinence. Gut 1991;32:345–6.

    PubMed  Google Scholar 

  16. Bennet RC, Duthie HL. The functional importance of the internal anal sphincter. Br J Surg 1964;51:355–7.

    PubMed  Google Scholar 

  17. Beersiek F, Parks AG, Swash M. Pathogenesis of anorectal incontinence. A histometric study of the anal sphincter musculature. J Neurol Sci 1979;42:111–27.

    Article  PubMed  Google Scholar 

  18. Schroder HD, Reske-Nielsen E. Fiber types in the striated urethral and anal sphincters. Acta Neuropathol (Berl) 1983;60:278–82.

    Article  Google Scholar 

  19. Burke RE, Levine DN, Zajac FE, Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science 1971;23:709–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These studies were financially supported by the Ministry of Trade and Industry and the Funds for Research in Medicine (Ontwikkelingsgeneeskunde), The Netherlands.

About this article

Cite this article

Konsten, J., Baeten, C.G.M.I., Havenith, M.G. et al. Morphology of dynamic graciloplasty compared with the anal sphincter. Dis Colon Rectum 36, 559–563 (1993). https://doi.org/10.1007/BF02049862

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02049862

Key words

Navigation