Skip to main content
Log in

Physiological inhibitors of blood coagulation and prothrombin fragment F 1+2 in type 2 diabetic patients with normoalbuminuria and incipient nephropathy

  • Original
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Microalbuminuria and haemostasis derangements have been considered as independent risk factors for cardiovascular death in type 2 (non-insulin-dependent) diabetic patients. Few studies have assessed coagulation inhibitors in type 2 diabetic patients with normoalbuminuria and microalbuminuria. Therefore, 32 type 2 diabetic patients with normoalbuminuria (albumin excretion rate, AER<20 mg/min, mean 7±1) and 28 type 2 diabetic patients with microalbuminuria (AER 20–200 mg/min, mean 84±11) were studied. The patients were matched for age, sex, disease duration and treatment, body mass index (BMI), blood pressure and glycohaemoglobin. Protein C and S activity, antithrombin III, thrombomodulin and prothrombin fragments 1+2 (F 1+2) were assessed together with fibrinogen, triglycerides, total and high density lipoprotein (HDL)-cholesterol concentrations. Fibrinogen, total and low density lipoprotein (LDL) concentrations were similar in the two groups, while a significant difference was observed for triglycerides (normoalbuminuric group: 128±10 mg/dl, microalbuminuric group: 184.1±17 mg/dl;P<0.007) and HDL-cholesterol (normoalbuminuric group: 45±2 mg/dl, microalbuminuric group: 39±2 mg/dl;P<0.05). The coagulation parameters were as follows: normoalbuminuric group: protein C activity 109%±5%, protein S 95.4%±5%, thrombomodulin 49.3±3 ng/ml, antithrombin III 93.3%±3%, F 1+2 1.05±0.04 nmol/l; microalbuminuric group: protein C activity 107%±4%, protein S 98.4%±4%, thrombomodulin 64.4±4 ng/ml, antithrombin III 93.3%±3%, F 1+2 1.03±0.05 nmol/l. The difference was significant for thrombomodulin (P<0.007). A significant direct correlation was observed in the microalbuminuric group between AER and thrombomodulin (r=0.38,P<0.05). In conclusion, our data do not support the hypothesis that a reduction in the activity of anticoagulant physiological inhibitors (protein C, protein S, antithrombin III) could contribute to explain the higher cardiovascular risk in type 2 diabetic patients with microalbuminuria. The elevation of plasma thrombomodulin concentration in type 2 diabetic patients could be the consequence of widespread vascular damage in diabetic patients with incipient nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morrish NJ, Stevens LK, Head J, Fuller JH, Jarret RJ, Keen H, A prospective study of mortality among middle-aged diabetic patients (the London cohort of the WHO Multinational Study of Vascular Disease in Diabetics) I: causes and death rates. Diabetologia 33:538–541, 1990

    PubMed  Google Scholar 

  2. Fuller JH, Keen H, Jarret RJ, Omer T, Meade T, Chakrabarti R, North WRS, Stirling Y, Haemostatic variables associated with diabetes and its complications. Br Med J 2:964–966, 1979

    PubMed  Google Scholar 

  3. Deckert T, Kofoed-Enevoldsen A, Norgaard K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen T, Microalbuminuria: implication for micro- and macrovascular disease. Diabetes Care 9: 1181–1191, 1992

    Google Scholar 

  4. Kwaan HC, Changes in blood coagulation, platelet function, and plasminogen-plasmin system in diabetes. Diabetes 35:617–619, 1986

    PubMed  Google Scholar 

  5. Schmitz A, Ingerslev J, Haemostatic measures in type 2 diabetic patients with microalbuminuria. Diabetic Med 7:521–525, 1990

    PubMed  Google Scholar 

  6. Knöbl P, Schernthaner G, Schnack C, Pietschmann P, Griesmacher A, Prager R, Müller M, Thrombogenic factors are related to urinary albumin excretion rate in type 1 (insulin-dependent) and type 2 (non0insulin-dependent) diabetic patients. Diabetologia 36:1045–1050, 1993

    PubMed  Google Scholar 

  7. Veglio M, Gruden G, Mormile A, Girotto M, Rossetto P, D'Este P, Cavallo-Perin P, Anticoagulant protein C activity in non-insulin-dependent diabetic patients with normoalbuminuria and microalbuminuria. Acta Diabetol 32:106–109, 1995

    PubMed  Google Scholar 

  8. Teitel JM, Bauer KA, Lau HK, Rosenberg RD, Studies of the prothrombin activation pathway utilizing radioimmunoassays for the F2/F1+2 fragment and thrombin-antithrombin complex. Blood 59:1086, 1982

    PubMed  Google Scholar 

  9. Martinoli JR, Stocker K, Fast functional protein C assay using Protac, a novel protein C activator. Thromb Res 43:253–264, 1986

    PubMed  Google Scholar 

  10. Wolf M, Bover-Neuman C, Martinoli JR, Amiral J, Meyer D, Larrieu MJ, A new functional assay for human protein S using activated factor V as substrate. Thromb Haemost 62:1144–1145, 1989

    PubMed  Google Scholar 

  11. Claus A, Measurement of fibrinogen. Acta Haematol 17:237–242, 1957

    PubMed  Google Scholar 

  12. Baker IA, Eastham R, Elwood PC, Ethrington M, O'Brien JR, Sweetnam PM, Haemostatic factors associated with ischemic heart disease in men aged 45 to 64 years. Br Heart J 47:490–494, 1982

    PubMed  Google Scholar 

  13. Yarnell JWG, Sweetnam PM, Elwood PC, Eastham R, Gilmour RA, O'Brien JR, Ethrington MD, Haemostasis factors and ischaemic heart disease: the Caerphilly study. Br Heart J 53: 483–487, 1985

    PubMed  Google Scholar 

  14. Iwashima Y, Sato T, Watanabe K, Ooshima E, Hiraishi S, Ishii H, Kazama M, Makino I, Elevation of plasma thrombomodulin level in diabetic patients with early diabetic nephropathy. Diabetes 39:983–988, 1990

    PubMed  Google Scholar 

  15. Vukovich TC, Schernthaner G, Decreased protein C levels in patients with insulin-dependent type I diabetes mellitus. Diabetes 35:617–619, 1986

    PubMed  Google Scholar 

  16. Viganò S, Mannucci PM, D'Angelo A, Gelfi C, Gensini GF, Rostagno C, Neri Serneri GG, Protein C antigen is not an acute phase reactant and is often high in ischemic heart disease and diabetes. Thromb Haemost 52:263–266, 1984

    PubMed  Google Scholar 

  17. Ceriello A, Quatraro A, Dello Russo P, Marchi E, Barbanti M, Milani MR, Giugliano D, Protein C deficiency in insulin dependent diabetes: a hyperglycemia-related phenomenon. Thromb Haemost 64:104–107, 1990

    PubMed  Google Scholar 

  18. Biondi G, Sorano GG, Conti M, Mameli G, Cirillo R, Marongui F, The behaviour of protein C is still an open question. Thromb Haemost 66:267, 1991

    PubMed  Google Scholar 

  19. Schernthaner G, Vukovich T, Knobl P, Hay U, Muller MM, The effect of near normoglycaemic control on plasma levels of coagulation factor VII and the anticoagulant protein C and S in insulin-dependent diabetic patients. Br J Haematol 73:356–359, 1989

    PubMed  Google Scholar 

  20. Takahashi H, Tatewaki W, Wada K, Shibata A, Plasma protein S in disseminated intravascular coagulation, liver disease, collagen disease, diabetes mellitus, and under oral anticoagulant therapy. Clin Chim Acta 182:195–208, 1989

    PubMed  Google Scholar 

  21. Garcìa Frade LJ, De la Calle H, Torrado MC, Lara JL, Cuaellar L, Garcìa Avello A, Hypofibrinolysis associated with vasculopathy in non insulin dependent diabetes mellitus. Thromb Res 59:51–59, 1990

    PubMed  Google Scholar 

  22. Carmassi F, Morale M, Puccetti R, De Negri F, Monzani F, Navalesi R, Mariani G, Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus. Thromb Res 67: 643–654, 1992

    PubMed  Google Scholar 

  23. Brownlee M, Cerami A, Vlassara H, Advanced products of non enzymatic glycosylation and the pathogenesis of diabetic vascular disease. Diabetes Metab Rev 4:437–451, 1988

    PubMed  Google Scholar 

  24. Patrassi GM, Picchienna R, Vettor R, Cappellatto G, Coccarielli A, Girolami A, Antithrombin III activity and concentration in diabetes mellitus. Thromb Haemost 54:415–517, 1985

    PubMed  Google Scholar 

  25. Ceriello A, Dello Russo P, Zuccotti C, Florio A, Nazzaro S, Pietrantuono C, Rosato GB, Decreased antithrombin III activity in diabetes may be due to non enzymatic glycosylation. A preliminary report. Thromb Haemost 50:633–634, 1983

    PubMed  Google Scholar 

  26. Ceriello A, Giuliano D, Quatraro A, Stante A, Consoli G, Dello Russo P, D'Onofrio F, Daily rapid blood glucose variations may condition antithrombin III biologic activity but not its plasma concentration in insulin-dependent diabetes. A possible role for liable non-enzymatic glycation. Diabetes Metab 13:16–19, 1987

    Google Scholar 

  27. Ceriello A, Giuliano D, Quatraro A, Stante A, Consoli G, Dello Russo P, D'Onofrio F, Induced hyperglycemia alters antithrombin III activity but not its plasma concentration in healthy normal subjects. Diabetes 36:320–323, 1987

    PubMed  Google Scholar 

  28. Deckert T, Feldt-Rasmussen B, Borch-Johensen K, Jensen T, Kofoed-Enevoldsen A, Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32:219–226, 1989

    PubMed  Google Scholar 

  29. Gruden G, Bazzan M, Stella S, Pagano G, Pileri A, Cavallo-Perin P, Microalbuminuria in insulin-dependent diabetes is associated with highe levels of prothrombin fragment 1+2. Thromb Res 72:541–546, 1993

    PubMed  Google Scholar 

  30. Gruden G, Cavallo-Perin P, Romagnoli R, Olivetti C, Frezet D, Pagano G, Prothrombin fragment F 1+2 and antithrombin III-thrombin complex in microalbuminuric type 2 diabetic patients. Diabetic Med 11:485–488, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mormile, A., Veglio, M., Gruden, G. et al. Physiological inhibitors of blood coagulation and prothrombin fragment F 1+2 in type 2 diabetic patients with normoalbuminuria and incipient nephropathy. Acta Diabetol 33, 241–245 (1996). https://doi.org/10.1007/BF02048551

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02048551

Key words

Navigation