Skip to main content
Log in

Der physikalische Status der Deoxyribonucleinsäure im Bakteriennucleoid

2. Mitteilung über Nucleoide

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Subject of this paper is the physical and organization state of DNA within the nucleoid and its preservation during various treatments necessary for preparation of ultrathin sections of bacteria.

Viscosimetric measurements show that the conformation of native DNA is not changed by treatment with osmium tetroxide or osmiumdichromate fixatives at pH 6 or 7. Neither has temporary complex formation with uranyl ions any effect. Storage at 22 C for 24 hours at pH 5.4 of the complex causes a 20% drop of viscosity, at pH 3.35 this drop is more pronounced. Denaturation of DNA by acid or heat seems to be slightly accelerated by the presence of uranyl ions.

The conditions for denaturation and depolymerization of intracellular DNA were studied by electron microscopy of ultrathin sections of bacteria. The DNA resists denaturation unless its polynucleotide chains have been degraded to a certain extent. After artificial reduction of average chain length to a value which is in the range of nucleoid length, the conditions for denaturation of DNA within the nucloid are the same as for denaturation of thymus DNA in vitro. The morphological criterion of denaturation was a change in the arrangement of DNA fibres from an orderly pattern to a chaotic state.

Uranyl ions do not cause visible denaturation of intracellular DNA in the absence of other deleterious influences, nor do they depolymerize intracellular DNA to such an extent that other agents may be able to cause rapid denaturation. Therefore uranyl treatment does not affect the physical and organizational state of intracellular DNA of bacteria.

Contrary to uranyl ions cupric ions cause gross disorganization of nucleoid material.

The results give strong support to the view that the bacterial nucleoid contains essentially one DNA molecule with helical conformation and almost uninterrupted polynucleotide chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Bamann, E. undTrapmann, H. 1959. Durch Metall-Ionen katalysierte Vorgänge, vornehmlich im Bereich der seltenen Erdmetalle. Advan. Enzymol.21: 169–198.

    Google Scholar 

  • Beer, M. andZobel, C. R. 1961. Electron stains II: Electron microscopic studies on the visibility of stained DNA molecules. J. Mol. Biol.3: 717–726.

    PubMed  CAS  Google Scholar 

  • Belozerski, A. N. andSpirin, A. S. 1960. Chemistry of the nucleic acids of microorganisms, Vol. 3, p. 147–161. In E. Chargaff and J. N. Davidson, [eds.], The nucleic acids. Academic Press, New York.

    Google Scholar 

  • Britten, R. 1962. Hydrolysis of RNA by lead acetate. Compt. Rend. Trav. Lab. Carlsberg32: 371–380.

    CAS  Google Scholar 

  • Cairns, J. 1963a. The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol. Biol.6: 208–213.

    Article  PubMed  CAS  Google Scholar 

  • Cairns, J. 1963b. The chromosome ofEscherichia coli. Cold Spring Harbor Symp. Quant. Biol.28: 43–46.

    Google Scholar 

  • Dimroth, K., Jaenicke, L. undHeinzel, D. 1950. Die Spaltung der Pentose-Nucleinsäure der Hefe mit Bleihydroxid. Liebigs Ann. Chem.566: 206–210.

    CAS  Google Scholar 

  • Doty, P., Marmur, J., Eigner, J. andSchildkraut, C. 1960. Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies. Proc. Natl. Acad. Sci. U.S.46: 461–476.

    CAS  Google Scholar 

  • Eichhorn, G. L. 1962. Metal ions as stabilizers or destabilizers of the deoxyribonucleic acid structure. Nature194: 474–475.

    PubMed  CAS  Google Scholar 

  • Eigner, J., Boedtker, H. andMichaels, G. 1961. The thermal degradation of nucleic acids. Biochim. Biophys. Acta51: 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Fuhs, G. W. 1964. Die Wirkung von Uranylsalzen auf die Struktur des Bakteriennucleoids (1. Mitteilung über Nucleoide) Arch. Mikrobiol.49: 383–404.

    Article  CAS  Google Scholar 

  • Fuhs, G. W. 1965. Grundzüge der Nucleoidfeinstruktur (3. Mitteilung über Nucleoide). Arch. Mikrobiol.50: 25–51.

    Article  Google Scholar 

  • Geiduschek, E. P. andHerskovits, T. T. 1961. Nonaqueous solutions of DNA. Reversible and irreversible denaturation in methanol. Arch. Biochem. Biophys.95: 114–129.

    Article  PubMed  CAS  Google Scholar 

  • Giesbrecht, P. 1959. Elektronenmikroskopische Darstellung verschiedener chemischer und physikalisch-chemischer Reaktionen an den DNS-Strukturen eines Chromosoms (Die Bakterienzelle als „biologisches Reagenzglas“). Zentr. Bakteriol. Parasitenk. I. Abt. Orig.176: 413–441.

    CAS  Google Scholar 

  • Hall, C. E. 1958. Electron microscopic investigations of DNA, RNA, and polynucleotides. p. 90–97.In Proc. Intern. Congr. Biochem. 4th, Vienna, Vol.9. Pergamon Press, London, 1959.

    Google Scholar 

  • Helmkamp, G. K. andTs'o, P. O. P. 1961. The secondary structures of nucleic acids in organic solvents. J. Am. Chem. Soc.83: 138–142.

    Article  CAS  Google Scholar 

  • Helmkamp, G. K. andTs'o P. O. P. 1962. Secondary structures of nucleic acids in organic solvents. III. Relationship of optical properties to conformation. Biochim. Biophys. Acta55: 601–608.

    Article  PubMed  CAS  Google Scholar 

  • Herskovits, T. T. 1962. Nonaqueous solutions of DNA: Factors determining the stability of the helical configuration in solution. Arch. Biochem. Biophys.97: 474–484.

    Article  CAS  Google Scholar 

  • Herskovits, T. T., Singer, S. J. andGeiduschek, E. P. 1961. Nonaqueous solutions of DNA. Denaturation in methanol and ethanol Arch. Biochem. Biophys.94: 99–114.

    Article  CAS  Google Scholar 

  • Katz, S. 1962a. Mechanism of the reaction of polynucleotides and HgII, Nature194: 569.

    CAS  Google Scholar 

  • Katz, S. 1962b. Reversible reaction of double-stranded polynucleotides and HgJI: Separation of the strands. Nature195: 997–998.

    PubMed  CAS  Google Scholar 

  • Kellenberger, E. 1960. The physical state of the bacterial nucleus, p. 39–66.In: Microbial genetics, 10th Symp. Soc. Gen. Microbiol. Cambridge Univ. Press.

  • Kellenberger, E. 1961. The study of natural and artificial DNA plasms by thin sections, p. 233–249.In R. J. C. Harris, [ed]., The interpretation of ultrastructure, Symp. Intern. Soc. Cell Biol. 1st., Bern. Academic Press, New York, 1962.

    Google Scholar 

  • Kleinschmidt, A., Lang, D. undZahn, R. K. 1961. Über die intrazelluläre Formation von Bakterien-DNS. Z. Naturforsch.16b: 730–739.

    CAS  Google Scholar 

  • Kleinschmidt, A. K. undLang, D. 1962. Intrazelluläre Desoxyribonucleinsäure von Bakterien. p. O-8.In S. S. Breese, Jr., [ed.], Electron Microscopy. 5th Intern. Congr. Electron Microscopy, Philadelphia, Vol. II. Academic Press, New York.

    Google Scholar 

  • Kran, K. undSchlote, F.-W. 1959. Zur Darstellung des chromosomalen Materials in Bakterien. Arch. Mikrobiol.34: 412–417.

    Article  PubMed  CAS  Google Scholar 

  • Marmur, J. 1960. Thermal denaturation of deoxyribonucleic acid isolated from a thermophile. Biochim. Biophys. Acta38: 342–343.

    PubMed  CAS  Google Scholar 

  • Marmur, J. andDoty, P. 1959. Dependence on composition of the configurational stability of deoxyribonucleic acids. Nature183: 1427–1429.

    PubMed  CAS  Google Scholar 

  • Marmur, J. andDoty, P. 1961. Thermal renaturation of deoxyribonucleic acids. J. Mol. Biol.3: 585–594.

    Article  PubMed  CAS  Google Scholar 

  • Marmur, J. andTs'o, P. O. P. 1961. Denaturation of deoxyribonucleic acid by formamide. Biochim. Biophys. Acta51: 32–36.

    Article  PubMed  CAS  Google Scholar 

  • Schlote, F.-W. 1961. Über den Feinbau von Chromosomen. I. Zur Cytologie vonEscherichia coli, A. Elektronenmikroskopische Befunde, B. Zellwachstum, Deutung der elektronenmikroskopischen Befunde. Arch. Mikrobiol.40: 283–305, 306–335.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, C. A. 1954. The interaction of HgCl2 with sodium thymonucleate. J. Amer. Chem. Soc.76: 6032–6034.

    Article  CAS  Google Scholar 

  • Tsuda, S. 1928. Zur Kenntnis der Strukturviskosität einiger Sole polymerer Kohlenhydrate. Kolloid-Z.45: 325–331.

    Article  CAS  Google Scholar 

  • Weed, L. L. 1963. Effects of copper onBacillus subtilis. J. Bacteriol85: 1003–1010.

    PubMed  CAS  Google Scholar 

  • Weygand, F., Wacker, A. undDellweg, H. 1951. Spaltung von Desoxyribonucleinsäuren mit Bleihydroxyd und Isolierung der Desoxyribose durch kontinuierliche Gegenstromverteilung. Z. Naturforsch.6b: 130–134.

    CAS  Google Scholar 

  • Yamane, T. andDavidson, N. 1961. On the complexing of desoxyribonucleic acid (DNA) by mercuric ion. J. Amer. Chem. Soc.83: 2599–2607.

    Article  CAS  Google Scholar 

  • Yamane, T. andDavidson, N. 1962. On the complexing of deoxyribonucleic acid by silver (I). Biochim. Biophys. Acta55: 609–621.

    Article  PubMed  CAS  Google Scholar 

  • Zobel, C. R. andBeer, M. 1961. Electron stains. I. Chemical studies on the interaction of DNA with uranyl salts. J. Biophys. Biochem. Cytol.10: 335–346.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhs, G.W. Der physikalische Status der Deoxyribonucleinsäure im Bakteriennucleoid. Antonie van Leeuwenhoek 31, 25–44 (1965). https://doi.org/10.1007/BF02045874

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02045874

Navigation