Skip to main content
Log in

Renal corpuscle development in boreal fishes with and without antifreezes

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Light and election microscopy were used to document the degree of renal corpuscle development in boreal telcost fishes that produce peptide or glycopeptide antifreeze compounds on a seasonal or permanent basis. Emphasis was placed on gadids, cottids and pleuronectids from both the North Atlantic and North Pacific Oceans. Based on the classification of Marshall and Smith (1930), corpuscle development ranged from fully glomerular (Type 1) to pauciglomerular (Type III). Unlike the situation in Antarctic notothenioid fishes, there were no aglomerular species among the boreal fishes. Corpuscles were small in diameter in gadids whereas in cottids they ranged from small to large with considerable intraspecific variation. Eight of eleven species with antifreeze had intermediate (Type II–III) or pauciglomerular kidneys with relatively few dense corpuscles (dia. 36–82μm). In some of these species an extensive mesangium and a substantial capillary endothelium contributed to a glomerular filtration barrier that was four to five times thicker than that in Type I kidneys. The corpuscles of other pauciglomerular species were unremarkable and appeared functional at the ultrastructural level. The boreal fish fauna is taxonomically diverse and, compared to the unrelated Antarctic fauna, of relatively recent evolutionary origin. Furthermore, antifreeze is present only during the winter in some species. Hence it is not surprising that the urinary conservation of antifreeze is accomplished by mechanisms other than the evolutionary loss of renal corpuscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Andriyashev, A.P. 1954. Fishes of the Northern Seas of the U.S.S.R. Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Bigelow, H.B. and Schroeder, W.C. 1953. Fishes of the Gulf of Maine. U.S. Government Printing Office. Washington.

    Google Scholar 

  • Boyd, R.B. and DeVries, A.I. 1983. The seasonal distribution of anionie binding sites in ihe basement membrane of the kidney glometulus of the winter flounderPseudopleuronectes americanus. Cell Liss. Res. 234: 271–277.

    Article  CAS  Google Scholar 

  • Boyd, R.B. and DeVries, A.I. 1986. A eomparison ol anionie sites in the glomerular basement membranes from different classes of fishes. Cell Fiss. Res. 245: 513–517.

    CAS  Google Scholar 

  • Bulger, R.I. and Dobyan, D.C. 1982. Recent advanees in renal morphology. Ann. Rev. Physiol. 44: 147–179.

    Article  CAS  Google Scholar 

  • Bulger, R.E. and Trump, B.F. 1968. Renal morphology of the English sole (Parophrys vetulus). Am. J. Anal. 123: 195–226.

    Article  CAS  Google Scholar 

  • Colville, I.P., Richards, R.H. and Dobbie, J.W. 1983. Variations in renal corpuscular morphology with adaptation to seawater in the rainbow trout.Salma gairdneri Richardson. J. Fish Biol. 23: 451–456.

    Google Scholar 

  • De Ruiter, A.J.H. 1981. Testosterone-dependent changesin vivo andin vitro in the structure of the renal glomeruli of the teleostGasterosteus aculeatus I. Cell Tiss. Res. 219: 253–266.

    Article  Google Scholar 

  • DeVries, A.I. 1971. Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172: 1152–1155.

    PubMed  CAS  Google Scholar 

  • DeVries, A.L. 1980. Biological antifreezes and survival in freezing environments.In Animals and Environmental Fitness. pp. 583 607. Edited by R. Gilles. Pergamon Press, Oxford.

    Google Scholar 

  • DeVries, A.I. 1982. Biological antifreeze agents in coldwaler fishes. Comp. Biochem. Physiol. 73A: 627–640.

    Article  CAS  Google Scholar 

  • DeVries, A.I. 1993. Antifreeze peptides and glycopeptides in cold-water fishes. Ann. Rev. Physiol. 45: 245–260.

    Article  Google Scholar 

  • DeVries, A.L. 1986. Antifreeze glycopeptides and peptides: Interactions with ice and water. Meth. Enzymol. 127: 293–303.

    Article  PubMed  CAS  Google Scholar 

  • DeWitt, H.H. 1971. Coastal and deep-water benthie fishes of the Antarctic. Antarct. Map Folio Ser. 15: 1–10.

    Google Scholar 

  • Dobbs, G.H., III and DeVries, A.L. 1975a. The aglomerular nephron of Antarctic teleosts: A light and electron microscopic study. Tiss. Cell 7: 159–170.

    Article  Google Scholar 

  • Dobbs, G.H., III and DeVries, A.L. 1975b. Renal function in Antarctic teleost fishes: Serum and urine composition. Mar. Biol. 29: 59–70.

    Article  CAS  Google Scholar 

  • Dobbs, G.H., III, Lin, Y. and DeVries, A.L. 1974. Aglomerularism in Antarctic fish. Science 185: 793–794.

    PubMed  CAS  Google Scholar 

  • Duman, J.G. and DeVries, A.L. 1975. The role of macromolecular antifreezes in cold water fishes. Comp. Biochem. Physiol. 52A: 193–199.

    Article  Google Scholar 

  • Eastman, J.T. and DeVries, A.L. 1986. Renal glomerular evolution in Antarctic notothenioid fishes. J. Fish Biol. 29: 649–662.

    Google Scholar 

  • Eastman, J.T., DeVries, A.L., Coalson, R.E., Nordquist, R.E. and Boyd, R.B. 1979. Renal conservation of antifreeze peptide in Antarctic celpout.Rhigophila dearborm. Nature. Lond. 282: 217–218.

    Article  PubMed  CAS  Google Scholar 

  • Elger, M., Kaune, R. and Hentschel, H. 1984. Glomerular intermittency in a freshwater teleost.Carassius auratus gibelio, after transfer to salt water. J. Comp. Physiol. B 154: 225–231.

    Google Scholar 

  • Forster, R.P. 1953. A comparative study of renal function in marine telcosts. J. Cell. Comp. Physiol. 42: 487–509.

    Article  CAS  Google Scholar 

  • Forster, R.P. 1975. Structure and function of aglomerular kidneys. Fortschr. Zool. 23: 232–247.

    PubMed  CAS  Google Scholar 

  • Grafflin, A.L. 1933. Glomerular degeneration in the kidney of the daddy seulpin (Myoxocephalus scorpius). Anal. Rec. 57: 59–79.

    Article  Google Scholar 

  • Grande, I. and Eastman, J.I. 1986. A review of Antarctic ichthyofaunas in the light of new fossil discoveries. Palacontology 29: 113–137.

    Google Scholar 

  • Hickman, C.P., Jr. 1968. Glomerular filtration and urine flow in the euryhaline southern flounder.Paralichthys lethostigma. in seawater. Can. J. Zool. 46: 427–437.

    PubMed  Google Scholar 

  • Hickman, C.P., Jr. and Trump, B.F. 1969. The kidney.In Fish' Physiology, Vol. 1. pp. 91–239. Edited by W.S. Hoar and D.J. Randall. Academic Press, New York.

    Google Scholar 

  • Hubbs, C.I., and Hubbs, C. 1953. An improved graphical analysis and comparison of series of samples. Syst. Zool. 2: 49–57.

    Google Scholar 

  • Johnson, G.I., Vanney, J.R. and Hayes, D. 1982. The Antarctic continental shell.In Antarctic Geoscience. pp. 995–1002. Edited by C. Craddock. University of Wisconsin Press, Madison.

    Google Scholar 

  • Kanwar, Y.S. and Farquhar, M.G. 1979. Presence of heparan sulfate in the glomerular basement membrane. Proc. Natl. Acad. Sci. U.S.A. 76: 1303–1307.

    PubMed  CAS  Google Scholar 

  • Kanwar, Y.S., Linker, A. and Farquhar, M.G. 1980. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J. Cell Biol. 86: 688–693.

    Article  PubMed  CAS  Google Scholar 

  • Kao, M.H., Fletcher, G.I., Wang, N.C. and Hew, C.I. 1986. The relationship between molecular weight and antifreeze polypeptide activity in marine fish. Can. J. Zool. 64: 578–582.

    Article  CAS  Google Scholar 

  • Leim, A.H. and Scott, W.B. 1966. Fishes of the Atlantic Coast of Canada. Fisheries Research Board of Canada, Bull. No. 155, Ottawa.

    Google Scholar 

  • Llano, G.A. 1978. Polar research: A synthesis with special reference to biology.In Polar Research: To the Present, and the Future, pp. 27–61. Edited by M.A. McWhinnie. Westview Press, Boulder, Colorado.

    Google Scholar 

  • Marshall, E.K., Jr. and Smith, H.W. 1930. The glomerular development of the vertebrate kidney in relation to habilat. Biol. Bull. 59: 135–153.

    Google Scholar 

  • Morrow, J.E. 1980. The Freshwater Fishes of Alaska. Alaska Northwest Publishing Co., Anchorage.

    Google Scholar 

  • Nash, J. 1931. The number and size of glomeruli in the kidneys of fishes. with observations on the morphology of the renal tubules of fishes. Am. J. Anal. 47: 425–445.

    Article  Google Scholar 

  • O'Grady, S.M., Schrag, J.D., Raymond, J.A. and DeVries, A.L. 1982. Comparison of antifreeze glycopeptides from Arctic and Antarctic fishes. J. Exp. Zool. 224: 177–185.

    Article  Google Scholar 

  • Petzel, D.H. 1982. Circulatory Conservation of Anionic Antifreeze Peptides in the Glomerular Winter Flounder (Pseudopleuronectes americanus). Ph.D. Thesis, University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Raymond, J.A., Lin, Y. and DeVries, A.L. 1975. Glycoprotein and protein antifreezes in two Alaskan fishes. J. Exp. Zool. 193: 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Renkin, E.M. and Gilmore, J.P. 1973. Glomerular filtration.In Handbook of Physiology, Section 8: Renal Physiology, pp. 185–248. Edited by J. Orloff and R.W. Berliner. American Physiological Society, Washington.

    Google Scholar 

  • Rhodin, J.A.G. 1974. Histology: A Text and Atlas. Oxford University Press, New York.

    Google Scholar 

  • Simpson, G.G., Row, A. and Lewontin, R.C. 1960. Quantitative Zoology (revised edition). Harcourt, Brace & World, New York.

    Google Scholar 

  • Sokal, R.R. and Rohlf, F.J. 1981. Biometry (2nd ed.). Freeman, San Francisco.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eastman, J.T., Boyd, R.B. & DeVries, A.L. Renal corpuscle development in boreal fishes with and without antifreezes. Fish Physiol Biochem 4, 89–100 (1987). https://doi.org/10.1007/BF02044318

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02044318

Keywords

Navigation