Skip to main content
Log in

Variation of total phenolic content and individual low-molecular-weight phenolics in foliage of mountain birch trees (Betula pubescens ssp.tortuosa)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We studied seasonal and between-tree variation in the composition and content of total and individual low-molecular-weight phenolics (LMWP) in leaves of mountain birch trees (Betula pubescens ssp.tortuosa). The major phenolic compounds were chlorogenic acid, quercetin-3-O-β-D-glucuronopyranoside, myricetin-3-O-(5-acetyl)-L-rhamnopyranoside, and 1-O-galloyl-β-D-(2-O-acetyl)-glucopyranose. The content of total phenolics, as well as the sum of individual LMWP, varied only slightly among trees while variation in contents of individual LMWP was large. Concentrations of almost all phenolics decreased during the growing season but pairwise correlations between individual phenolics remained similar over the whole season indicating tree-specific LMWP profiles over the season. Among flavonoids, the between-tree component of variation was 2.6 times as large as the seasonal component, while for variation of nonflavonoids the between-tree component was larger than the seasonal one. To explain the significant correlations within both flavonoid and nonflavonoid compounds, we discuss the biogenesis of LMWP in birch leaves, as well as their ecological role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appel, H. M., 1993. Phenolics in ecological interactions: The importance of oxidation.J. Chem. Ecol. 19:1521–1552.

    Google Scholar 

  • Baldwin, I. T., Schultz, J. C., andWard, D. 1987. Patterns and sources of leaf tannin variation in yellow birch (Betula allegheniensis) and sugar maple (Acer saccharum).J. Chem. Ecol. 13:1069.

    Google Scholar 

  • Bate-Smith, E. 1954. Astringency in foods.Food 23:124–127.

    Google Scholar 

  • Bate-Smith, E., andLerner, N. 1954. Leucoanthocyanins 2. Systematic distribution of leucoanthocyanins in leaves.Biochemistry. 58:126–132.

    Google Scholar 

  • Berenbaum, M. R., 1995. Turnabout is fair play: Secondary roles for primary compounds.J. Chem. Ecol. 21:925–940.

    Google Scholar 

  • Bernays, E. 1981. Plant tannins and insect herbivores: An appraisal.Ecol. Entomol. 6:353–360.

    Google Scholar 

  • Coley, P. D., Bryant, J. P., andChapin, F. S. 1985. Resource availability and plant antiherbivore defense.Science 230:895–899.

    Google Scholar 

  • Cooper-Driver, G., Finch, S., Swain, T., andBernays, E. 1977. Seasonal variation in secondary plant compounds in relation to the palatability ofPteridium aquilinium.Biochem. Syst. Ecol. 5:177–183.

    Google Scholar 

  • Dement, W. A., andMooney, H. A. 1974. Seasonal variation in the production of tannins and cyanogenic glucosides in the chapparal shrubsHeteromeles arbutifolia.Oecologia 15:65–76.

    Google Scholar 

  • Duffey, S., Bloem, K., andCampbell, B. 1986. Consequences of sequestration of plant natural products in plant-insect-parasitoid interactions, pp. 31–60,in D. Boethel and R. Eikenbary (eds.). Interactions of Plant Resistance and Parasitoids and Predators of Insects. John Wiley & Sons (Ellis Horwood Limited), Frome, Somerset, U.K.

    Google Scholar 

  • Feeny, P. P. 1970. Seasonal change in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars.Ecology 51:565–581.

    Google Scholar 

  • Feeny, P. P. 1976. Plant apparency and chemical defense.Recent Adv. Phytochem. 10:1–40.

    Google Scholar 

  • Felton, G. W., Donato, K., Del Vecchio, R. J., andDuffey, S. S. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores.J. Chem. Ecol. 15:2667–2694.

    Google Scholar 

  • Gross, G. 1992. Enzymatic synthesis of gallotannins and related compounds.Recent Adv. Phytochem. 26:297–324.

    Google Scholar 

  • Hanhimäki, S., Senn, J., andHaukioja, E. 1996. The convergence in growth of foliage-chewing insect species on individual mountain birch trees.J. Anim. Ecol. In press.

  • Harborne, J. B., Boardley, M., andLinder, H. P., 1985. Variations of flavonoid patterns within the genusChondrapetalum.Phytochemistry 24:273–278.

    Google Scholar 

  • Haslam, E. 1988. Plant polyphenols (syn. vegetable tannins) and chemical defense—a reappraisal.J. Chem. Ecol. 14:1789–1805.

    Google Scholar 

  • Haukioja, E., Niemelä, P., andSirén, S. 1985. Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover the defoliation, in the mountain birch,Betula pubescens ssp.tortuosa.Oecologia 65:214–222.

    Google Scholar 

  • Haukioja, E., Ruohomäki, K., Suomela, J., andVuorisalo, T. 1991. Nutritional quality as a defense against herbivores.Forest Ecol. Manage. 39:237–245.

    Google Scholar 

  • Hurrel, R., Finot, P., andCuq, J. 1982. Protein-polyphenol reactions. 1. Nutritional and metabolic consequences of the reaction between oxidized caffeic acid and the lysine residues of casein.J. Nutr. 47:191–211.

    Google Scholar 

  • Julkunen-Tiitto, R. 1989. Distribution of certain phenolics in salix species (salicaceae). PhD dissertation. University of Joensuu, Joensuu.

    Google Scholar 

  • Kuiters, A. T. 1989. Effects of phenolic acids on germination and early growth of herbaceous woodland plants.J. Chem. Ecol. 15:467–479.

    Google Scholar 

  • Lawton, J. H. 1976. The structure of the arthropod community on bracken.Bot. J. Linn. Soc. London 73:187–216.

    Google Scholar 

  • Li, H. H., Inoue, M., Nishimura, H., Mizutani, J., andTsuzuki, E. 1993. Interactions oftranscinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce.J. Chem. Ecol. 19:1775–1787.

    Google Scholar 

  • Lindroth, R. L., Shia, M. T. S., andSchreiber, J. 1987. Seasonal patterns in the phytochemistry of threePopulus species.Biochem. Syst. Ecol. 15:681–686.

    Google Scholar 

  • Lois, R. 1994. Accumulation of UV-absorbing flavonoids induced by UV-radiation inArabidopsis thaliana L.Planta 194:498–503.

    Google Scholar 

  • Macauley, B. J., andFox, L. R. 1980. Variation in total phenols and condensed tannins inEucalyptus: Leaf phenology and insect grazing.Aust. J. Ecol. 5:31–35.

    Google Scholar 

  • Martin, J., andMartin M. 1982. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species.Oecologia 54:205–211.

    Google Scholar 

  • Martin, J., Martin, M., andBernays, E. 1987. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids herbivores: Implication for theories of plant defense.J. Chem. Ecol. 13:605–621.

    Google Scholar 

  • Northup, R. R., Yu, Z., Dahlgren, R. A., andVogt, K. A. 1995. Polyphenol control of nitrogen release from pine litter.Nature 377:227–229.

    Google Scholar 

  • Ossipov, V., andShein, I. 1990. Role of quinic acid in lignin biosynthesis inPinus sylvestris.Fiziol. Rast. 37:518–526.

    Google Scholar 

  • Ossipov, V., Nurmi, K., Loponen, J., Prokopiev, N., Haukioja, E., andPihlaja, K. 1995. HPLC isolation and identification of flavonoids from white birchBetula pubescens leavesBiochem.Syst. Ecol. 23:213–222.

    Google Scholar 

  • Ossipov, V., Nurmi, K., Loponen, J., Haukioja, E., andPihlaja, K. 1996. HPLC separation and identification of phenolic compounds from leaves ofBetula pubescens andBetula pendula.J. Chromatogr. A 721:59–68.

    Google Scholar 

  • Pierpoint, W. 1983. Reaction of phenolic compounds with proteins, and their relevance to the production of leaf protein, pp. 235–267,in L. Telek and H. Graham (eds.). Leaf Protein Concentrates. Avi Publishing, Westport, Connecticut.

    Google Scholar 

  • Rhoades, D. F., andCates, R. G. 1976. Toward a general theory of plant antiherbivore chemistry.Recent Adv. Phytochem. 10:168–213.

    Google Scholar 

  • Schultz, J. C. 1989. Tannin-insect interactions. pp. 417–433,in R. W. Hemingway and J. J. Karchesy (eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.

    Google Scholar 

  • Schultz, J. C., Nothnagle, P. J., andBaldwin, I. T. 1982. Seasonal and individual variation in leaf quality of two northern hardwoods tree species.Am. J. Bot. 69:753–759.

    Google Scholar 

  • Shen, Z., Haslam, E., Falshow, C., andBegley, M. 1986. Procyanidins and polyphenols ofLatrix gemelini bark.Phytochemistry 26:2629–2635.

    Google Scholar 

  • Stafford, H. 1988. Proanthocyanidins and the lignin connection.Phytochemistry 27:1–6.

    Google Scholar 

  • Strack, D., Heilemann, J., Wray, V., andDirks, H. 1989. Structures and accumulation patterns of soluble and insoluble phenolics from Norway spruce needles.Phytochemistry 28:2071–2078.

    Google Scholar 

  • Suomela, J., Ossipov, V., andHaukioja, E. 1995. Variation among and within mountain birch trees in foliage phenols, carbohydrates, and amino acids, and in growth ofEpirrita autumnata larvae.J. Chem. Ecol. 21:1421–1446.

    Google Scholar 

  • Takechi, M., andTanaka, Y. 1987. Binding of 1,2,3,4,6-pentagalloylglucose to protein, lipids, nucleic acids and sugars.Phytochemistry 26:95–97.

    Google Scholar 

  • Tahvanainen, J., Julkunen-Thtto, R., Rousi, M., andReichardt, P. B. 1991. Chemical determinants of resistance in winter-dormant seedlings of European white birch (Betula pendula) to browsing by the mountain hare.Chemoecology 2:49–54.

    Google Scholar 

  • Thieme, H. 1965. Die phenolglycoside der Salicaceen. 6.Pharmazie 20:688–691.

    PubMed  Google Scholar 

  • Thieme, H. 1971. Vorkommen und Verbreitung von Phenolglycosiden in der Familie der Salicaceen.Herba Pol. 17:248–257.

    Google Scholar 

  • Torres, A. M., Mau-Lastovicka, T., andRezaaiyan, R. 1987. Total phenolic and high-performance liquid chromatography of phenolic acids of avocado.J. Agric. Food Chem. 35:921–925.

    Google Scholar 

  • Wilt, F. M., andMiller, G. C. 1992. Seasonal variation of coumarin and flavonoid concentrations in persistent leaves of Wyoming big sagebrush (Artemisia tridentata ssp.wyomingensis: Asteraceae).Biochem. Syst. Ecol. 20:53–67.

    Google Scholar 

  • Wilt, F. M., Geddes, J. D., Tamma, R. V., Miller, G. C., andEverett, R. L. 1992. Interspecific variation of phenolic concentrations in persistent leaves among six taxa from subgenusTridentatae ofArtemisia (Asteraceae).Biochem. Syst. Ecol. 20:41–52.

    Google Scholar 

  • Winter, M., andHerrmann, K. 1986. Esters and glucosides of hydroxycinnamic acids in vegetables.J. Agric. Food Chem. 34:616–620.

    Google Scholar 

  • Zenk, M. 1979. Recent work on cinnamoyl CoA derivatives.Recent Adv. Phytochem. 12:139–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nurmi, K., Ossipov, V., Haukioja, E. et al. Variation of total phenolic content and individual low-molecular-weight phenolics in foliage of mountain birch trees (Betula pubescens ssp.tortuosa). J Chem Ecol 22, 2023–2040 (1996). https://doi.org/10.1007/BF02040093

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02040093

Key Words

Navigation