Skip to main content
Log in

Temperature and ionic strength influence on U(VI/V) and U(IV/III) redox potentials in aqueous acidic and carbonate solutions

  • Solution Chemistry
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Redox potentials: E(UO 2+2 /UO +2 )=60±4 mV/NHE, E(U4+/U3+)=−630±4mV/NHE measured at 25°C in acidic medium (HClO4 1M) using cyclic voltametry are in accordance with the published data. From 5°C to 55°C the variations of the potentials of these systems (measured against Ag/AgCl electrode) are linear. The entropies are then constant: [ΔS(UO 2+2 /UO +2 )−ΔS(Ag/AgCl)]/F=0±0.3 mV/°C, [ΔS(U4+/U3+)−ΔS(Ag/AgCl)]/F=1.5±0.3 mV/°C. From 5°C to 55°C, in carbonate medium (Na2CO3=0.2M), the Specific Ionic Interaction Theory can model the experimental results up to I=2M (Na+, ClO 4 , CO 2−3 ): E(UO2(CO3) 4−3 /UO2(CO3) 5−3 )=−778±5 mv/NHE (I=0, T=25°C, Δ∈(25°C)=∈(UO2(CO3) 4−3 , Na+)−∈(UO2(CO3) 5−3 , Na+)=0.92 kg/mole, ΔS(UO2(CO3) 4−3 /UO2(CO3) 5−3 =−1.8±0.5 mV/°C (I=0), Δ∈=∈(Cl, Na+)=(1.14−0.007T) kg/mole. The U(VI/V) potential shift, between carbonate and acidic media, is used to calculate (at I=0,25°C):

$$\log \frac{{\beta _3 U(V)}}{{\beta _3 U(VI)}} = - 14.7 \pm 0.5$$

and then

$$\log \beta _3 U(V) = 6.6 \pm 0.3.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ch. RIGLET, P. VITORGE, I. GRENTHE, Inorg. Chim. Acta, 133 (1987) 323.

    Article  Google Scholar 

  2. Ch. RIGLET, P. ROBOUCH, P. VITORGE, Radiochim. Acta, 46 (1989) 85.

    Google Scholar 

  3. P. ROBOUCH, Report CEA 5473, 1988.

  4. I. GRENTHE, D. FERRI, F. SALVATORE, G. RICCIO, J. Chem. Soc. Dalton Trans., 2439 (1984).

  5. I. GRENTHE, P. ROBOUCH, P. VITORGE, J. Less Common Met. 127 (1986) 225.

    Article  Google Scholar 

  6. I. GRENTHE, H. WANNER, Chemical Thermodynamics of Uranium, OCDE NEA TDB, to be published.

  7. J. BARD, R. PARSONS, J. JORDAN, Standard potentials in Aqueous Solution, M. Dekker, Inc., New York, NY10016, 1986, p. 304.

    Google Scholar 

  8. Ch. RIGLET, Chimie du Neptunium et autres Actinides en Milieu Carbonate, Thesis, March 17, 1989, Paris VI University, France.

    Google Scholar 

  9. L. MAYA, Inorg. Chem., 22 (1983) 2093.

    Article  Google Scholar 

  10. D. FERRI, I. GRENTHE, F. SALVATORE, Inorg. Chem. 22 (1983) 3162.

    Article  Google Scholar 

  11. G. A. SIMAKIN, Elektrokhimiya, 11 (1975) 1026.

    Google Scholar 

  12. T. W. NEWTON, J. C. SULLIVAN, Handbook of the Physics and Chemistry of the Actinides, Vol. 3, Ch. 10. A. J. FREEMAN, C. KELLER (Eds), 1985.

  13. S. W. RABIDEAU, J. Am. Chem. Soc., 78 (1956) 2705.

    Article  Google Scholar 

  14. R. E. CONNICK, W. H. M. VEY, J. Am. Chem. Soc., 73 (1951) 1798.

    Article  Google Scholar 

  15. P. BLANC, Report CEA 5406, 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capdevila, H., Vitorge, P. Temperature and ionic strength influence on U(VI/V) and U(IV/III) redox potentials in aqueous acidic and carbonate solutions. Journal of Radioanalytical and Nuclear Chemistry, Articles 143, 403–414 (1990). https://doi.org/10.1007/BF02039609

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02039609

Keywords

Navigation