Skip to main content
Log in

Methode de representation de la turbulence d'echelle inferieure a la maille pour un modele tri-dimensionnel de convection nuageuse

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Significant improvements are occurring in the representation of physical processes in atmospheric convection models. They should go along with parallel improvements in the parameterization of subgrid scale turbulent processes. This problem appears to be particularly delicate in the presence of clouds, due to the local release of latent heat.

Two important points are the choice of adequate turbulent thermodynamic variables and of the method for truncating the statistical moment equations. These topics are discussed here within the framework of the three-dimensional convection model under development at the Laboratoire de Météorologie Dynamique. Assuming the need for at least a simplified second-order closure, two improvements are tested on a numerical simulation of the Porto Rico experiment conducted by the National Center for Atmospheric Research (U.S.A.) in 1972. They concern the use of a rate equation for sub-grid scale turbulent kinetic energy and of specific variables which are approximately conserved in the condensation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  • André, J. C., De Moor, G., Lacarrere, P., Therry, G., et du Vachat, R.: 1978, ‘Modeling the 24-Hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’,J. Atmos. Sci. 35, 1861, 1883.

    Google Scholar 

  • André, J. C., De Moor, G., Lacarrere, P., et du Vachat, R.: 1976, ‘Turbulence Approximation for Inhomogeneous Flows: Part II. The Numerical Simulation of a Penetrative Convection Experiment’,J. Atmos. Sci. 33, 482–491.

    Google Scholar 

  • Betts, A. K.: 1973, ‘Non Precipitating Cumulus Convection and its Parameterization’,Quart. J. Roy. Meteorol. 99, 178, 196.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., et Bradley, E. F.: 1971, ‘Flux - Profile Relationships in the Atmospheric Surface Layer’,J. Atm. Sci. 28, 181, 189.

    Google Scholar 

  • Deardorff, J. W.: 1972, ‘Numerical Investigation of Neutral and Unstable Planetary Boundary Layers’,J. Atmospheric Sci. 29, 91, 115.

    Google Scholar 

  • Deardorff, J. W.: 1974a, ‘Theree-Dimensional Numerical Study of the Height and Mean Structure of the Planetary Boundary Layer’,Boundary-Layer Meteorol. 7, 81, 106.

    Google Scholar 

  • Deardorff, J. W.: 1974b, ‘Three-Dimensional Numerical Study of Turbulence in an Entraining Mixed Layer’,Boundary-Layer Meteorol. 7, 199, 226.

    Google Scholar 

  • Deardorff, J. W.: 1980, ‘Strato-Cumulus Capped Mixed Layers Derived from a Three-Dimensional Model’,Boundary-Layer Meteorol. 18, 495–527.

    Google Scholar 

  • Findikakis, A. N., et Street, R. L.: 1979, ‘An Algébraic Model for Sub-Grid-Scale Turbulence in Stratified Flows’,J. Atmos. Sci. 36, 1934–1949.

    Google Scholar 

  • Libersky, L. D.: 1980, ‘Turbulence in Cumulus Clouds’,J. Atmos. Sci. 37, 2332–2346.

    Google Scholar 

  • Lilly, D. K.: 1967, ‘The Representation of Small-scale Turbulence in Numerical Simulation Experiments’, Proc. IBM Computing Symposium on Environmental Sciences IBM form No. 320, 1951.

  • Mellor, G. L., and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’,J. Atmos. Sci. 31, 1791, 1806.

    Google Scholar 

  • Nicholls, S., Lemone, M. A., Sommeria, G.: 1980, ‘The Simulation of a Fair Weather Marine Boundary Layer in GATE Using a Three Dimensional Model’,Quart. J. Roy. Meteorol. Soc.(in press).

  • Pennel, W. T., and Le Mone, M. A.: 1974, ‘An Experimental Study of Turbulence Structure in the Fair-Weather Trade Wind Boundary Layer’,J. Atmos. Sci. 31, 1308, 1323.

    Google Scholar 

  • Schemm, C. E., and Lipps, F.: 1976, ‘Some Results from a Simplified Three-Dimensional Numerical Model of Atmospheric Turbulence’,J. Atmos. Sci. 33, 1021, 1141.

    Google Scholar 

  • Smagorinsky, J.: 1963, ‘General Circulation Experiments with the primitive Equations: I — The-Basic Experiment’,Monthly Weather Rev. 91, 99, 164.

    Google Scholar 

  • Sommeria, G.: 1974, ‘Modèle Tri-Dimentionnel pour la Simulation Numérique de la Couche Limite Planétaire. Application à la Couche Limite Tropicale’. Thèse de Doctorat d'Etat, Université PARIS VI, 100 p.

  • Sommeria, G.: 1976, ‘Three-Dimensional Simulation of Turbulent Process in an Undisturbed Trade Wind Boundary Layer’,J. Atmos. Sci. 33, 216, 241.

    Google Scholar 

  • Sommeria, G., and Deardorff, J. W.: 1977, ‘Subgrid Scale Condensation in Models for Non Precipitating Clouds’,J. Atmos. Sci. 34, 344, 355.

    Google Scholar 

  • Sommeria, G., and Le Mone, M. A.: 1978, ‘Direct Testing of a Three-Dimensional Model of the Planetary Boundary Layer against Experiment Data’,J. Atmos. Sci. 35, 25, 39.

    Google Scholar 

  • Wyngaard, J. C., and Coté, O. R.: 1974, ‘The Evolution of a Convective Planetary Boundary Layer. A Higher Order-Closure Model Study’,Boundary-Layer Meteorol. 7, 289, 308.

    Google Scholar 

  • Zeman, O., et Lumley, J. L.: 1976, ‘Modeling Buoyancy Driven Mixed Layers’,J. Atmos. Sci. 33, 1974–1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redelsperger, J.L., Sommeria, G. Methode de representation de la turbulence d'echelle inferieure a la maille pour un modele tri-dimensionnel de convection nuageuse. Boundary-Layer Meteorol 21, 509–530 (1981). https://doi.org/10.1007/BF02033598

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033598

Navigation