Skip to main content
Log in

Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Lysiphlebus cardui, the dominant aphidiid parasitoid of the black bean aphid,Aphis fabae cirsiiacanthoidis (Afc), on creeping thistle, is able to forage in ant-attended aphid colonies without being attacked by ants. Several behavioral observations and experimental studies led to the hypothesis thatL. cardui mimics the cuticular hydrocarbon profile of its host aphid. Chemical analysis of the cuticular extracts revealed that bothL. cardui and Afc exclusively possess saturated hydrocarbons:n-alkanes, monomethyl (MMA), dimethyl (DMA), and trimethyl alkanes (TMA). Comparison of the hydrocarbon profiles of parasitoid and aphid showed great qualitative resemblance between parasitoid and host:L. cardui possesses almost all host-specific compounds in addition to species-specific hydrocarbons of mainly higher molecular weight (>C30). However, there is a lesser quantitative correspondence between parasitoid and host aphid. Furthermore, we analyzed the cuticular hydrocarbon profile of another parasitoid of Afc,Trioxys angelicae. This aphidiid species is vigorously attacked and finally killed by honeydewcollecting ants when encountered in aphid colonies. Its cuticular hydrocarbon profile is characterized by the presence of large amounts of (Z)-11-alkenes of chain lenghts C27, C29, C31, and C33, in addition to alkanes and presumably trienes. The role of the unsaturated hydrocarbons onT. angelicae as recognition cues for aphid-attending ants is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blomquist, G. J., andDillwith, J. W. 1985. Cuticular lipids, pp. 117–154,in G. A. Kerkut and L. J. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 3. Pergamon Press, Oxford.

    Google Scholar 

  • Blomquist, G. J., Tillman-Wall, J. A., Guo, L., Quilici, D. R., Gu, P., andScahl, C. 1993. Hydrocarbon and hydrocarbon derived sex pheromones in Insects: Biochemistry and endocrine regulation, pp. 317–351,in D. W. Stanley-Samuelson and D. R. Nelson (eds.). Insect Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln.

    Google Scholar 

  • Bonavita-Cougourdan, A., Clément, J. L., andLange, C. 1987. Nestmate recognition: The role of cuticular hydrocarbons in the antCamponotus vagus Scop.J. Entomol. Sci. 22:1–10.

    Google Scholar 

  • Bonavita-Cougourdan, A., Clément, J. L., andLange, C. 1993. Functional subcaste discrimination (foragers and brood-tenders) in the antCamponotus vagus Scop.: Polymorphism of cuticular hydrocarbon patterns.J. Chem. Ecol. 19:1461–1477.

    Google Scholar 

  • Dettner, K., andLiepert, C. 1994. Chemical mimicry and camouflage.Annu. Rev. Entomol. 39:129–154.

    Google Scholar 

  • Dunkelblum, E., Tan, S. H., andSilk, P. J. 1985. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: Application to analysis of fatty acids in pheromone glands of four Lepidoptera.J. Chem. Ecol. 11:265–277.

    Google Scholar 

  • Franks, N., Blum, M. S., Smith, R. K., andAllies, A. B. 1990. Behavior and chemical disguise of cuckoo antLeptothorax kutteri in relation to its hostLeptothorax acervorum.J. Chem. Ecol. 16:1431–1444.

    Google Scholar 

  • Howard, R. W. 1993. Cuticular hydrocarbons and chemical communication, pp. 179–226,in D. W. Stanley-Samuelson and D. R. Nelson (eds.). Insect Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln.

    Google Scholar 

  • Howard, R. W., Stanley-Samuelson, D. W., andAkre, R. D. 1990. Biosynthesis and chemical mimicry of cuticular hydrocarbons from the obligate predator,Microdon albicomatus Novak (Diptera: Syrphidae) and its ant prey,Myrmica incompleta Provancher (Hymenoptea: Formicidae).J. Kans. Entomol. Soc. 63:437–443.

    Google Scholar 

  • Jackson, L. L., andBlomquist, G. J. 1976. Insect waxes, pp. 201–233,in P. E. Kolattukudy (ed.). Chemistry and Biochemistry of Natural Waxes. Elsevier Scientific Publishing, Amsterdam.

    Google Scholar 

  • Jones, R. L., Lewis, W. J., Bowman, M. C., Beroza, M., andBierl, B. A. 1971. Host-seeking stimulant for parasite of corn earworm: Isolation, identification, and synthesis.Science 173:842–843.

    Google Scholar 

  • Liepert, C., andDettner, K. 1993. Recognition of aphid parasitoids by honeydew-collecting ants: The role of cuticular lipids in a chemical mimicry systems.J. Chem. Ecol. 19:2143–2153.

    Google Scholar 

  • Lockey, K. H. 1988. Lipids of the insect cuticle: Origin, composition and function.Comp. Biochem. Physiol. 89 B:595–645.

    Google Scholar 

  • Mackauer, M., andVölkl, W. 1993. Regulation of aphid populations by aphidiid wasps: Does aphidiid foraging behaviour or hyperparasitism limit impact?Oecologia 94:339–350.

    Google Scholar 

  • McCarthy, E. D., Han, J., andCalvin, M. 1968. Hydrogen atom transfer in mass spectrometric fragmentation patterns of saturated aliphatic hydrocarbons.Anal. Chem. 40:1475–1480.

    Google Scholar 

  • Starý, P. 1966. Aphid parasites (Hymenoptera, Aphidiidae) and their relationship to aphid-attending ants, with respect to biological control.Insectes Soc. 13:185–202.

    Google Scholar 

  • Starý, P., andVölkl, W. 1988. Aggregations of aphid parasitoid adults (Hymenoptera, Aphidiidae).J. Appl. Entomol. 105:270–279.

    Google Scholar 

  • Stowe, M. K. 1988. Chemical mimicry, pp. 513–580,in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, New York.

    Google Scholar 

  • Takada, H., andHashimoto, Y. 1985. Association of the aphid parasitoidsAclitus sappaphis andParalipsis eikoae (Hymenoptera, Aphidiidae) with the aphid-attending antsPheidole fervida andLasius niger (Hymenoptera, Formicidae).Kontyû 53:150–160.

    Google Scholar 

  • Vander Meer, R. K., andWoicik, D. P. 1982. Chemical mimicry in the myrmecophilous beetleMyrmecaphodius excavaticollis.Science 218:806–808.

    Google Scholar 

  • Völkl, W. 1990. Fortpflanzungsstrategien bei Blattlausparasitoiden (Hymenoptera: Aphidiidae): Konsequenzen ihrer Interaktionen mit Wirten und Ameisen. PhD thesis. University of Bayreuth, Bayreuth, Germany.

    Google Scholar 

  • Völkl, W. 1992. Aphids or their parasitoids: Who actually benefits from ant-attendance?J. Anim. Ecol. 61:273–281.

    Google Scholar 

  • Völkl, W., andMackauer, M. 1993. Interactions between ants and parasitoid wasps foraging forAphis fabae ssp.cirsiiacanthoidis on thistles.J. Insect Behav. 6:301–312.

    Google Scholar 

  • Völkl, W., Hübner, G., andDettner, K. 1994. Interactions betweenAlloxysta brevis (Hymenoptera, Cynipoidea, Alloxystidae) and honeydew-collecting ants: How an aphid hyperparasitoid overcomes ant aggression by chemical denfense.J. Chem. Ecol. 20:2901–2915.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liepert, C., Dettner, K. Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants. J Chem Ecol 22, 695–707 (1996). https://doi.org/10.1007/BF02033579

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033579

Key Words

Navigation