Skip to main content
Log in

Secondary chemistry of hybrid and parental willows: Phenolic glycosides and condensed tannins inSalix sericea, S. eriocephala, and their hybrids

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Salix sericea andS. eriocephala differ markedly in secondary chemistry.S. sericea produces phenolic glycosides, salicortin and 2′-cinnamoylsalicortin, and low concentrations of condensed tannin. In contrast,S. eriocephala produces no phenolic glycosides, but high concentrations of condensed tannins. Hybrid chemistry is intermediate for both types of chemicals, suggesting predominantly additive inheritance of these two defensive chemical systems from the parental species. However, there is extensive variation among hybrids. This variation may be due to genetic variation among parental genotypes, which genes were passed on, or to subsequent back-crossing. The differences in chemistry are likely to exert a strong effect on the relative susceptibility of hybrid and parental willows to herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar, J.M., andBoecklen, W.J. 1992. Patterns of herbivory in theQuercus grisea × Quercus gambelii species complex.Oikos 64:498–504.

    Google Scholar 

  • Argus, G.W. 1986. The genusSalix (Salicaceae) in the southeastern United States.Syst. Bot. Monogr. 9:1–170.

    Google Scholar 

  • Barton, N.H., andHewitt, G.M. 1985. Analysis of hybrid zones.Annu. Rev. Ecol. System. 16:113–148.

    Google Scholar 

  • Basey, J.M., Jenkins, S.H., andBusher, P.E. 1988. Optimal central-place foraging by beavers: Tree size selection in relation to defensive chemicals of quaking aspen.Oecologia 76:278–282.

    Google Scholar 

  • Berenbaum, M.R., Zangerl, A.R., andNitao, J.K. 1986. Constraints on chemical coevolution: Wild parsnips and the parsnip webworm.Evolution 40:1215–1228.

    Google Scholar 

  • Boecklen, W.J., andSpellenberg, R. 1990. Structure of herbivore communities in two oak (Quercus spp.) hybrid zones.Oecologia 85:92–100.

    Google Scholar 

  • Bryant, J.P., Clausen, T.P., Reichardt, P.B., McCarthy, M.C., andWerner, R.A. 1987. Effect of nitrogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix [Choristoneura conflictana (Walker)].Oecologia 73:513–517.

    Google Scholar 

  • Clausen, T.P., Reichardt, P.B., Bryant, J.P., Werner, R.A., Post, K., andFrisby, K. 1989. Chemical model for short-term induction in quacking aspen (Populus tremuloides) foliage against herbivores.J. Chem. Ecol. 15:2335–2346.

    Google Scholar 

  • Denno, R.F., Larsson, S., andOlmstead, K.L. 1990. Role of enemy-free space and plant quality in host-plant selection by willow beetles.Ecology 71:124–137.

    Google Scholar 

  • Floate, K.D., andWhitman, T.G. 1993. The “hybrid bridge” hypothesis: Host shifting via plant hybrid swarms.Am. Nat. 141:651–662.

    Google Scholar 

  • Fritz, R.S., Nichols-Orians, C.M., andBrunsfeld, S.J. 1994. Interspecific hybridization of plants and resistance to herbivores: Hypotheses, genetics, and variable responses in a diverse herbivore community.Oecologia 97:106–117.

    Google Scholar 

  • Hagerman, A.E., andButler, L.G. 1989. Choosing appropriate methods and standards for assaying tannin.J. Chem. Ecol. 15:1795–1810.

    Google Scholar 

  • Huesing, J., Jones, D., Deverna, J., Myers, J., Collins, G., Severson, R., andSisson, V. 1989. Biochemical investigations of antibiosis material in leaf exudate of wildNicotiana species and interspecific hybrids.J. Chem. Ecol. 15:1203–1217.

    Google Scholar 

  • Julkunen-Tiitto, R. 1986. A chemotaxonomic survey of phenolics in leaves of northern Salicaceae species.Phytochemistry 25:663–667.

    Google Scholar 

  • Julkunen-Tiitto, R. 1989. Phenolic constituents ofSalix: A chemotaxonomic survey of further Finnish species.Phytochemistry 28:2115–2125.

    Google Scholar 

  • Julkunen-Tiitto, R., Tahvanainen, J., andSilvola, J. 1993. Increased CO2 and nutrient status changes affect phytomass and the production of plant defensive secondary chemicals inSalix myrsinifolia (Salisb.).Oecologia 95:495–498.

    Google Scholar 

  • Kolehmainen, J., Roininen, H., Julkunen-Tiitto, R., andTahvanainen, J. 1994. Importance of phenolic glucosides in host selection of shoot galling sawfly,Euura amerinae, onSalix pentandra.J. Chem. Ecol. 20:2455–2466.

    Google Scholar 

  • Levy, A., andMilo, J. 1991. Inheritance of morphological and chemical characters in interspecific hybrids betweenPapaver bracteatum andPapaver pseudo-orientale.Theor. Appl. Genet. 81:537–540.

    Google Scholar 

  • Lindroth, R.L., andPeterson, S.S. 1988. Effects of plant phenols on performance of southern armyworm larvae.Oecologia 75:185–189.

    Google Scholar 

  • Lindroth, R.L., Hsia, M.T.S., andScriber, J.M. 1987. Characterization of phenolic glycosides from quaking aspen.Biochem. Syst. Ecol. 15:677–680.

    Google Scholar 

  • Lindroth, R.L., Scriber, J.M., andHsia, M.T.S. 1988. Chemical ecology of the tiger swallowtail: Mediation of host use by phenolic glycosides.Ecology 69:814–822.

    Google Scholar 

  • Marquis, R.J. 1990. Genotypic variation in leaf damage inPiper arieianum (Piperaceae) by a multispecies assemblage of herbivores.Evolution 44:104–120.

    Google Scholar 

  • Meier, B., Bettschart, A., Shao, Y., andLautenschlager, E. 1989. Einsatz der modernen HPLC fur chemotaxonomische Untersuchungen morphologisch schwer zu differenzierenderSalix-Hybriden.Planta Med. 55:213–214.

    Google Scholar 

  • Nichols-Orians, C.M., Clausen, T.P., Fritz, R.S., Reichardt, P.B., andWu, J. 1992. A new phenolic glycoside isolated fromSalix sericea Marshall.Phytochemistry 31:2180–2181.

    Google Scholar 

  • Nichols-Orians, C.M., Fritz, R.S., andClausen, T.P. 1993. The genetic basis for variation in the concentration of phenolic glycosides inSalix sericea: Clonal variation and sex-based differences.Biochem. Syst. Ecol. 21:535–542.

    Google Scholar 

  • O'Donoughue, L.S., Raelson, J.V. andGrant, W.F. 1990. A morphological study of interspecific hybrids in the genusLotus (Fabaceae).Can. J. Bot. 68:803–812.

    Google Scholar 

  • Orians, C.M. 1995. Preserving leaves for tannin and phenolic glycoside analyses: A comparison of methods using three willow taxa.J. Chem. Ecol. 21:1235–1243.

    Google Scholar 

  • Paige, K.N., andCapman, W.C. 1993. The effects of host-plant genotype, hybridization, and environment on gall-aphid attack and survival in cottonwood: The importance of genetic studies and the utility of RFLPS.Evolution 47:36–45.

    Google Scholar 

  • Price, P.W., Waring, G.L., Julkunen-Thtto, R., Tahvanainen, J., Mooney, H.A., andCraig, T.P. 1989. Carbon-nutrient balance hypothesis in within-species phytochemical variation ofSalix lasiolepis.J. Chem. Ecol. 15:1117–1131.

    Google Scholar 

  • Rabotyagov, V.D. andAkimov, Y.A. 1987. Inheritance of essential oil content and composition in interspecific hybridization of lavender.Sov. Genet. 22:1163–1172.

    Google Scholar 

  • Reiseberg, L.H., andBrunsfeld, S.J. 1992. Molecular evidence and plant introgression, pp. 151–176,in P.S. Soltis, D.E. Soltis, and J.D. Doyle (eds.). Molecular Systematics of Plants. Chapman and Hall, New York.

    Google Scholar 

  • Rieseberg, L.H., andEllstrand, N.C. 1993. What can molecular and morphological markers tell us about plant hybridization.Crit. Rev. Plant Sci. 12:213–241.

    Google Scholar 

  • Rowell-Rahier, M. 1984. The presence or absence of phenolglycosides inSalix (Salicaceae) leaves and the level of dietary specialization of some of their herbivorous insects.Oecologia 62:26–30.

    Google Scholar 

  • Schultz, J.C. 1989. Tannin-insect interactions, pp. 417–433,in R.W. Hemingway and J.J. Karchesy (eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.

    Google Scholar 

  • Tahvanainen, J., Julkunen-Thtto, R., andKettunen, J. 1985a. Phenolic glycosides govern the food selection pattern of willow feeding leaf beetles.Oecologia 67:52–56.

    Google Scholar 

  • Tahvanainen, J., Helle, E., Julkunen-Thtto, R. andLavola, A. 1985b. Phenolic compounds of willow bark as deterrents against feeding by mountain hare.Oecologia 65:319–323.

    Google Scholar 

  • Whitham, T.G. 1989. Plant hybrid zones as sinks for pests.Science 244:1490–1493.

    Google Scholar 

  • Whitham, T.G., Morrow, P.A., andPotts, B.M. 1991. Conservation of hybrids.Science 254:779–780.

    Google Scholar 

  • Whitham, T.G., Morrow, P.A., andPotts, B.M. 1994. Plant hybrid zones as centers of biodiversity: The herbivore community of two endemic Tasmanian eucalypts.Oecologia 97:481–490.

    Google Scholar 

  • Zucker, W.V. 1983. Tannins: Does structure determine function? An ecological perspective.Am. Nat. 121:335–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orians, C.M., Fritz, R.S. Secondary chemistry of hybrid and parental willows: Phenolic glycosides and condensed tannins inSalix sericea, S. eriocephala, and their hybrids. J Chem Ecol 21, 1245–1253 (1995). https://doi.org/10.1007/BF02027559

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02027559

Key Words

Navigation