Skip to main content
Log in

Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3m KCl

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Cells of isolated frog skin epithelium were observed microscopically during impalement with standard microelectrodes of 5 to 20 MΩ resistance, filled with 3m KCl. Impaled cells, as well as some neighboring cells, were seen to swell 10 to 100 sec after impalement, while the negative potential recorded by the microelectrode depolarized (open circuit conditions). Apparently, osmotic swelling of small epithelial cells may be caused by diffusion of KCl from such electrodes. This conclusion is supported by calculations quoted from the literature of KCl loss from microelectrodes.

Intracellular recordings from epithelial with destructed cellular membranes gave negative “pre-tip potentials” of up to 18 mV. The potentials could be altered by electrode movement, by decreasing the ambient pH or the tip-pH and by modifying the fixed charges of the tissue chemically. It is shown that even a moderate loss of KCl, which will not result in appreciable swelling, can produce negative potentials in front of the electrode tip if the protoplasm has a high density of negative fixed charges.

We suggest the use of 3m KCl electrodes with resistances above 30 MΩ if after impalement compression of intracellular material by the tip can be avoided. Where such compression cannot be avoided, it is best to fill the microelectrode with an isotonic solution which mimics the electrolyte composition of the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amberson, W.R., Klein, H., 1928. The influence of pH upon the concentration potentials across the skin of the frog.J. Gen. Physiol. 11:823

    Google Scholar 

  2. Biber, T.U.L., Chez, R.A., Curran, P.F. 1966. Na transport across frog skin at low external Na concentrations.J. Gen. Physiol. 49:1161

    Google Scholar 

  3. Biber, T.U.L., Curran, P.F. 1969. Direct measurement of uptake of sodium at the outer surface of the skin.Physiologist 12:176

    Google Scholar 

  4. Biber, T.U.L., Curran, P.F. 1970. Direct measurement of uptake of sodium at the outer surface of the frog skin.J. Gen. Physiol. 56:83

    Google Scholar 

  5. Carasso, N., Favard, P., Jard, S., Rajerison, R.M. 1971. The isolated frog skin epithelium. I. Preparation and general structure in different physiological states.J. Microsc. 10:315

    Google Scholar 

  6. Cereijido, M., Curran, P.F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543

    Google Scholar 

  7. Chowdhury, T.K., Snell, F.M. 1965. A microelectrode study of electrical potentials in frog skin and toad bladder.Biochim. Biophys. Acta 94:461

    Google Scholar 

  8. Chowdhury, T.K., Snell, F.M. 1966. Further observations on the intracellular electrical potential in frog skin and toad bladder.Biochim. Biophys. Acta 112:581

    Google Scholar 

  9. Coombs, J.S., Eccles, J.C., Fatt, P. 1955. The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory postsynaptic potential.J. Physiol. (London) 130:326

    Google Scholar 

  10. Davis, T.L., Jackson, J.W., Day, B.E., Shoemaker, R.L., Rehm, W.S. 1970. Potentials in frog cornea and microelectrode artifact.Am. J. Physiol. 219:178

    Google Scholar 

  11. Ehrenfeld, J., Nelson, D.J., Lindemann, B. 1976. Volume changes of epithelial cells of frog skin on impalement with a microelectrode.Pfluegers Arch. 365:R32

    Google Scholar 

  12. Engbaek, L., Hoshiko, T. 1957. Electrical potential gradients through frog skin.Acta Physiol. Scand. 39:348

    Google Scholar 

  13. Firth, D.R., DeFelice, L.J. 1971. Electrical resistance and volume flow in glass microelectrodes.Can J. Physiol. Pharmacol. 49:436

    Google Scholar 

  14. Geisler, C.D., Lightfoot, E.N., Schmidt, F.P., Sy, F. 1972. Diffusion effects of liquid-filled micropipettes: A pseudobinary analysis of electrolyte leakage.IEEE Transact. Biomed. Engin. BME-19:372

    Google Scholar 

  15. Giulian, D., Diacumakos, E.G. 1977. The electrophysiological mapping of compartments within a mammalian cell.J. Cell Biol. 72:86

    Google Scholar 

  16. Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571

    Google Scholar 

  17. Hviid Larsen, E. 1973. Effect of amiloride, cyanide and ouabain on the active transport pathway in toad skin.In: Transport Mechanisms in Epithelia. H.H. Ussing and N.A. Thorn, editors, pp. 131–143. Munksgaard, Copenhagen, and Academic Press, New York

    Google Scholar 

  18. Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298

    Google Scholar 

  19. Küchler, G. 1964. Zur Frage der Übertragungseigenschaften von Glasmikroelektroden bei der intracellulären Membranpotentialmessung.Pfluegers Arch. 280:210

    Google Scholar 

  20. Lacaz Vieira, F., Nunes, M.A., Cury, L. 1976. Permeability parameters of the toad isolatedStratum corneum.J. Membrane Biol. 27:251

    Google Scholar 

  21. Lassen, U.V., Nielsen, A.-M.T., Pape, L., Simonsen, L.O. 1971. The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation.J. Membrane Biol. 6:269

    Google Scholar 

  22. Lavallée, M., Szabo, G. 1969. The effect of glass surface conductivity phenomena on the tip potential of micropipette electrodes.In: Glass Microelectrodes. M. Lavallée, O.F. Schanne, and N. Hebert, editors. pp. 95–110. J. Wiley & Sons, New York-London

    Google Scholar 

  23. Lindemann, B. 1975. Impalement artifacts in microelectrode recordings of epithelial membrane potentials.Biophys. J. 15:1161

    Google Scholar 

  24. Lindemann, B., Thorns, U. 1967. The fast potential spike of frog skin generated at the outer surface of the epithelium.Science 158:1473

    Google Scholar 

  25. Martin, D.W., Curran, P.F. 1966. Reversed potentials in isolated frog skin. II. Active transport of chloride.J. Cell. Physiol. 67:367

    Google Scholar 

  26. Nagel, W. 1975. Intracellular PD of frog skin epithelium.Pfluegers Arch. 355:R70

    Google Scholar 

  27. Nagel, W. 1976a. Effect of changes in epithelial [Na] on intracellular PD of frog skin.Pfluegers Arch. 362:R27

    Google Scholar 

  28. Nagel, W. 1976b. The intracellular electrical potential profile of the frog skin epithelium.Pfluegers Arch. 365:135

    Google Scholar 

  29. Nagel, W. 1976c. Intracellular junctions of frog skin epithelial cells.Nature (London) 264:469

    Google Scholar 

  30. Nagel, W. 1977a. Na transport properties of the apical border of the frog skin epithelium.Physiologist 19:308

    Google Scholar 

  31. Nagel, W. 1977b. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal solution.J. Physiol. (London) 269:777

    Google Scholar 

  32. Nastuk, W.L., Hodgkin, A.L. 1950. The electrical activity of single muscle fibres.J. Cell. Comp. Physiol. 35:39

    Google Scholar 

  33. Nunes, M.A., Lacaz Vieira, F. 1975. Negative potential level in the outer layer of the toad skin.J. Membrane Biol. 24:161

    Google Scholar 

  34. Ottoson, D., Sjöstrand, F., Stenström, S., Svaetichin, G. 1953. Microelectrode studies on the E.M.F. of the frog skin related to electron microscopy of the dermo-epidermal junction.Acta Physiol. Scand. 29:611 (Suppl. 106)

    Google Scholar 

  35. Rawlins, F., Mateu, L., Fragachan, F., Whittembury, G. 1970. Isolated toad skin epithelium: Transport characteristics.Pfluegers Arch. 316:64

    Google Scholar 

  36. Reeves, O.R. 1975. Adult amphibian epidermal proteins: Biochemical characterization and developmental appearance.J. Embryol. Exp. Morph. 34:55

    Google Scholar 

  37. Scheer, B.T., Mumbach, M.W. 1960. The locus of the electromotive force in frog skin.J. Cell. Comp. Physiol. 55:259

    Google Scholar 

  38. Schmidt, O. 1963. Thesis, Medical Faculty, University of Aarhus, Denmark

    Google Scholar 

  39. Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Physiol. Scand. 61:484

    Google Scholar 

  40. Whittembury, G. 1964. Electrical potential profile of the toad skin epithelium.J. Gen. Physiol. 47:795

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, D.J., Ehrenfeld, J. & Lindemann, B. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3m KCl. J. Membrain Biol. 40 (Suppl 1), 91–119 (1978). https://doi.org/10.1007/BF02026000

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02026000

Keywords

Navigation