Skip to main content
Log in

Stationary scientometric distributions

Part III. The role of the Zipf distribution

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The non-Gaussian character of scientific activity is discussed. This character makes correct only non-Gaussian approximations of stationary distributions of scientific activity. Deviation of different non-Gaussian approximations from the Zipf distribution can be explained in some cases by distortion introduced by the observer. The hypothesis that latent stationary distributions of scientific (and generally human) activity for separate person are always described by the Zipf distribution is formulated using the considerations connected with the variational entropy and the Zigler principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and References

  1. S. D. HAITUN, Stationary, scientometric distributions. Part I. The different approximations —Scientometrics, 4 (1982) No. 1; Part II. Non-Gaussian nature of scientific activities. —Scientometrics, 4 (1982) No. 2.

  2. The definition of latent and indicator parameters see, for example: S. D. HAITUN, Scientometric investigations in the USSR.Scientometrics, 2 (1980) 65–84.

    Google Scholar 

  3. For example, see: O. U. GROOS. Bradford's law and the Keenan-Atherton data,American Documentation, 19 (1967) 46.

    Google Scholar 

  4. See: D. H. LEAVENS, Communication from Dikson H. Leavens,Econometrics, 21 (1959) 630; D. J. de S. PRICE,Little Science, Big Science. Columbia Univ. Press, N. Y.-L., 1963; R. MITTERMERR, K. D. KNORR, Scientific productivity and accumulative advantage: a thesis reassessed in the light of international data,R & D Management, 9 (1979) 235–239.

    Google Scholar 

  5. B. MANDELBROT, Contribution a la theorie mathematique des jeux de communication. Ph. D. Thesis, Paris, Dec. 16, 1952, Publ. de l'Inst. de Statistique de l'Univ. de Paris, Vol. 2, No. 1, 2, p. 80–102, 1953.

  6. Yu. A. SHREIDER, O vozmozhnosti teoreticheskogo vyvoda statisticheskikh zakonomernostey teksta (The Zipf distribution and the variational principle of the maximum of entropy),Problemy peredachy informatsiyi, 3 (1967) 57–63.

    Google Scholar 

  7. A. I. YABLONSKY, Stokhasticheskiye modely nauchnoy deyatelnosti (Stochastic models of research activities) in:Sistemniye issledovaniya. Yezhegodnik, 1975 (System Research, Yearbook — 1975), M., 1976, p. 5–42; A. I. YABLONSKY, On fundamental regularities of the distribution of scientific productivity,Scientometrics, 2 (1980) 3–34.

  8. I. J. GOOD,Statistics of Language. The Encyclopedia of Linguistic. Information and Control, Pergamon Press, Oxford, 1969.

    Google Scholar 

  9. A. BOOKSTEIN,Bibliometric symmetry and the Bradford-Zipf laws. University of Chicago, Graduate Library School, 1975.

  10. G. U. YULE, A mathematical theory of evolution based on conclusions of dr. I. C. Willis,Phylosophical Transactions of the Royal Society, Ser. B, 213 (1934) 21–87.

    Google Scholar 

  11. D. G. CHAMPERNOWNE, A model of income distribution.Econometrical J., 63 (1953) 318.

    Google Scholar 

  12. H. A. SIMON, On a class of skew distribution function.Biometrica, 42 (1955) 425–440.

    Google Scholar 

  13. I. STEINDL,Random Process and the Growth of Firms, N.Y., 1965.

  14. I. S. CRAMER,Empirical Econometrics, Amsterdam, L., 1969.

  15. A. I. YABLONSKY, 1976, op. cit., note 7. Stokhasticheskiye modely nauchnoy deyatelnosti (Stochastic models of research activities) in:Sistemniye issledovaniya. Yezhegodnik, 1975 (System Research, Year-book —1975), M., 1976, p. 5–42.

  16. D. J. de S. PRICE, A general theory of bibliometric and other cumulative advantage processes.J. of the American Society for Information Science, 27 (1976) 292–306.

    Google Scholar 

  17. B. M. HILL, Zipf's law and prior distributions for the comparison of a population,J. of the American Statistical Association, 65 (1970) 1220–1232; B. M. HILL, Rank frequency forms of Zipf's law.J. of the American Statistical Association, 69 (1974) 1017–1026; B. M. HILL, M. W. WOODROOFE, Stronger forms of Zipf's law.J. of the American Statistical Association, 70 (1975) 212–219.

    Google Scholar 

  18. J. H. RAVICHANDRA RAO, The distribution of scientofic productivity and social change.J. of the American Society for Information Science, 31 (1980) 111–122.

    Google Scholar 

  19. A. I. YABLONSKY, op. cit., note 7. Stokhasticheskiye modely nauchnoy deyatelnosti (Stochastic models of research activities) in:Sistemniye issledovaniya. Yezhegodnik, 1975 (System Research, Yearbook — 1975), M., 1976, p. 5–42.

  20. D. J. de S. PRICE, op. cit., note 4..

    Google Scholar 

  21. A. I. YABLONSKY,Modeli i metody matematicheskogo issledovaniya nauki. Nauchno-analitichesky obzor (Models and Methods of Mathematic Investigations of Science, Review), M., 1977.

  22. S. S. STEVENS, Neural events and the psychological law.Science, 170 (1970) No. 3962, 1043–1050.

    Google Scholar 

  23. See: R. MITTERMERR, K. R. KNORR, op. cit., note 4..

    Google Scholar 

  24. J. P. BRITTON, The productivity of scientists: a prelude to manpower studies. Mimeographical paper, Yale University, 1963.

  25. R. K. MERTON, The Matthew effect in science.Science, 59 (1968) 56–63.

    Google Scholar 

  26. J. COLE, S. COLE,Social Stratification in Science. Chicago Univ. Press., Chicago, 1973.

    Google Scholar 

  27. R. D. ALLISON, J. A. STEWART, Productivity differences among scientists: evidence for accumulative advantage.American Sociological Review, 39 (1974) 596–606.

    Google Scholar 

  28. D. J. de S. PRICE, op. cit., note 16..

    Google Scholar 

  29. Ibid..

    Google Scholar 

  30. J. K. RAVICHANDRA RAO, op. cit., note 18..

    Google Scholar 

  31. P. BURDIEU, The specificity of the scientific field and the social condition of the progress of reason.Social Science Information, 14 (1975) 19–47.

    Google Scholar 

  32. K. D. KNORR, 1977, see: R. MITTERMERR, K. D. KNORR, op. cit., note 4..

    Google Scholar 

  33. For example, see: E. FERMI, On the origin of the cosmic radiation,Phys. Review, 75 (1949) 1169–1174; V. L. GINZBURG, The astrophysics of cosmic rays,Scientific American, 220 (1969) 51–63.

    Google Scholar 

  34. H. ZIEGLER, Some extrerum principles in irreversible thermodinamics with application to continuum mechanics, in:Progress in Solid Mechanics, Vol.IV, North-Holland Publ. Co., Amsterdam, 1963, Chapter II; S. D. HAITUN, K voprosu o ponyatiyi entropiyi (On concept of entropy), in:Problemy istoriyi i metodologiyi nauchnogo poznaniya (Problems of History and Methodology of Knowledge), Nauka, Moscow, 1974, p. 281–294.

    Google Scholar 

  35. E. W. MONTROLL, W. W. BADGER,Introduction to Quantitative Aspects of Science Phenomenon, Gordon and Breach Science Publ., N. Y., L., Paris, 1974.

    Google Scholar 

  36. D. J. de S. PRICE, D. de B. BEAVER, Collaboration in an invisible, collegeAmerican Psychogist, 21 (1966) No. 11.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haitun, S.D. Stationary scientometric distributions. Scientometrics 4, 181–194 (1982). https://doi.org/10.1007/BF02021059

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02021059

Keywords

Navigation