Skip to main content
Log in

Chemiluminescence measurements of xanthine oxidase and xanthine dehydrogenase activity in four types of cardiovascular cell

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The activity and location of xanthine oxidase (EC.1.2.3.2.) and xanthine dehydrogenase (EC.1.2.1.37) have been measured using luminol-enhanced chemiluminescence in four types of cell from the cardiovascular system (neonatal and adult rat cardiac myocytes, rat aortic vascular smooth muscle cells, rat cardiac fibroblasts and human umbilical vein endothelial cells). The detection system developed was both rapid and reproducible and could be used on sub-milligram quantities of cells. Xanthine oxidase was located primarily in cells derived from the vasculature and especially in endothelial cells, as was xanthine dehydrogenase. Only neonatal myocytes had more dehydrogenase activity than oxidase. The significance of the location and activity of these enzymes is discussed in relation to the pathology of myocardial ischaemia, arrhythmogenesis and microvascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernier M, Hearse DJ, Manning AS (1986) Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with anti-free radical interventions and a free radical generating system in the isolated perfused rat heart. Circ Res 58:331–340

    PubMed  Google Scholar 

  2. Blackwell CP, Woodward B, Zakaria MNM (1986) Reperfusion-induced 86-Rubidium efflux. The role of free radicals. Br J Pharmacol Proc Suppl 88:421P

    Google Scholar 

  3. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Google Scholar 

  4. Bruder G, Heid H, Jarasch ED, Keenan TW, Mather IH (1982) Characteristics of membranebound and soluble forms of xanthine oxidase from milk and endothelial cells of capilliaries. Biochim Biophys Acta 701:357–369

    PubMed  Google Scholar 

  5. Burton KP, McCord JM, Ghai G (1984) Myocardial alterations due to free-radical generation. Am J Physiol 246:H776-H783

    PubMed  Google Scholar 

  6. Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LF, Downey JM (1985) Xanthine oxidase as a source of free radical damage in myocardial ischaemia. J Mol Cell Cardiol 17:145–152

    PubMed  Google Scholar 

  7. Chambers DE, Parks DA, Patterson G, Yoshida S, Burton K, Parmley LF, McCord JM, Downey JM (1983) Role of oxygen-derived radicals in myocardial ischaemia. Fed Proc 42:1093

    Google Scholar 

  8. Lubbe WF, Davies PS, Opie LH (1978) Ventricular arrhythmias associated with coronary artery occlusion and reperfusion in the isolated rat heart: a model for assessment of antifibrillatory action of anti-arrhythmic agents. Cardiovasc Res 12:212–220

    PubMed  Google Scholar 

  9. Elion GB, Kovensky A, Hitchings GH, Metz E, Rundless RW (1966) Metabolic studies of allopurinol, an inhibitor of xanthine oxidase. Biochem Pharmacol 15:863–880

    Article  PubMed  Google Scholar 

  10. Fridovich I (1970) Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem 245:4053–4057

    PubMed  Google Scholar 

  11. Fridovich I (1983) Superoxide radical: an endogeneous toxicant. Ann Rev Pharmacol Toxicol 23:239–257

    Article  Google Scholar 

  12. Gimbrone Jr MA, Coltran RS, Folkman J (1974) Human vascular endothelial cells in culture. J Cell Biol 60:673–684

    Article  PubMed  Google Scholar 

  13. Granger DN, Hollwarth ME, Parks DA (1986) Ischaemia-reperfusion injury: role of oxygenderived free radicals. Acta Physiol Scand suppl 548:47–63

    PubMed  Google Scholar 

  14. Hess ML, Okabe E, Ash P, Kontos HA (1984) Free radical mediation of the effects of acidosis on calcium transport by cardiac sarcoplasmic reticulum in whole heart homogenates. Cardiovasc Res 18:149

    PubMed  Google Scholar 

  15. Higgins TJC, Allsop D, Bailey PJ (1979) The effect of β-adrenergic blocking drugs on the intrinsic beating rate of cultured myocytes. J Mol Cell Cardiol 11:101–107

    Article  PubMed  Google Scholar 

  16. Hille R, Massey V (1981) Tight-binding inhibitors of xanthine oxidase. Pharmac Ther 14:249–263

    Article  Google Scholar 

  17. Jarasch ED, Grund C, Bruder G, Heid HW, Keenan TW, Franke WW (1981) Localisation of xanthine oxidase in mammary gland epithelium and capillary endothelium. Cell 25:67–82

    Article  PubMed  Google Scholar 

  18. Jennings RB, Reimer KA (1981) Lethal myocardial ischemic injury. Am J Pathol 102:241–255

    PubMed  Google Scholar 

  19. Jennings RB, Reimer KA, Hill ML, Mayer SE (1981) Total ischemia in dog heart in vitro 1. Comparison of high energy phosphate production, utilisation and depletion and of adenine nucleotide catabolism in total ischemia in vitro vs severe ischemia in vivo. Circ Res 49:892–900

    PubMed  Google Scholar 

  20. Kloner RA, Ganote CE, Whalen Jr DA, Jennings RB (1974) Effect of a transient period of ischemia on myocardial cells. Am J Pathol 74:399–422

    PubMed  Google Scholar 

  21. Manning AS, Coltart DJ, Hearse DJ (1984) Ischaemia and reperfusion-induced arrhythmias in the rat. Effects of xanthine oxidase inhibition with allopurinol. Circ Res 55:545–548

    PubMed  Google Scholar 

  22. Manning AS, Hearse DJ (1984) Reperfusion-induced arrhythmias: mechanisms and prevention. J Mol Cell Cardiol 16:497–518

    PubMed  Google Scholar 

  23. Massey V, Komai H, Palmer G, Elion GB (1970) On the mechanism of inhibition of xanthine oxidase by allopurinol and other pyrazolo(3,4-d)pyrimidines. J Biol Chem 245:2837–2844

    PubMed  Google Scholar 

  24. McCord JM (1984) Are free-radicals a major culprit? In: Hearse DJ, Yellon DM (eds) Therapeutic approaches to myocardial infarct size limitation. Raven Press, New York, pp 209–218

    Google Scholar 

  25. McCord JM (1985) Oxygen-derived free radicals in postischaemic tissue injury. New Engl J Med 312:159–163

    PubMed  Google Scholar 

  26. McCord JM, Fridovich I (1968) The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243:5753–5760

    PubMed  Google Scholar 

  27. Miura T, Ogiso T (1985) Luminol chemiluminescence and peroxidation of unsaturated fatty acid induced by the xanthine oxidase system: effect of oxygen radical scavengers. Chem Pharm Bull 33:3402–3407

    PubMed  Google Scholar 

  28. Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R (1985) Enhancement of recovery of myocardial function by oxygen free radical scavengers after reversible regional ischaemia. Circulation 72:915

    PubMed  Google Scholar 

  29. Nayler WG, Ferrari R, Williams A (1980) Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischaemic and reperfused myocardium. Am J Cardiol 46:242–248

    Article  PubMed  Google Scholar 

  30. Otani H, Tanaka H, Inoue T, Umemoto M, Omoto K, Tanata K, Sato T, Osako T, Matsuda A, Nohoyama A, Kagawa T (1984) In vitro study on contribution of oxidative metabolism of isolated rat heart mitochondria to myocardial reperfusion injury. Circ Res 55:168

    PubMed  Google Scholar 

  31. Parkes DA, Granger DN (1986) Xanthine oxidase: biochemistry distribution and physiology. Acta Physiol Scand suppl 548:87–89

    PubMed  Google Scholar 

  32. Powell T, Terrar DA, Twist VW (1980) Electrical properties of individual cells isolated from adult rat ventricular myocardium. J Physiol 302:131–153

    PubMed  Google Scholar 

  33. Rubyani GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endotheliumderived relaxing factor. Am J Physiol 250:H822-H827

    PubMed  Google Scholar 

  34. Schlafer M, Kane PF, Wiggins VY, Kirsch MM (1982) Possible role for cytotoxic oxygen metabolites in the pathogenesis of cardiac ischaemic injury. Circulation 66 (suppl):1–85

    PubMed  Google Scholar 

  35. Schoutsen B, De Jong JW, Harmsen E, De Tombe PP, Achterberg PW (1983) Myocardial xanthine oxidase/dehydrogenase. Biochim Biophys Acta 762:519–524

    Article  PubMed  Google Scholar 

  36. Spector T, Hall WW, Krenitsky TA (1986) Human and bovine xanthine oxidases. Inhibition studies with oxypurinol. Biochem Pharmacol 35:3109–3114

    Article  PubMed  Google Scholar 

  37. von Tscharner V, Bailey IA (1983) Non-invasive kinetic measurements of 3H-nitrendipine binding to isolated rat myocytes by Condensed Phase Radioluminescence. FEBS Lett 162:185–188

    Article  PubMed  Google Scholar 

  38. Ward PA, Johnson KJ, Till GO (1986) Oxygen radicals and microvascular injury of lungs and kidney. Acta Physiol Scand suppl 548:79–85

    PubMed  Google Scholar 

  39. Wand WR, Rajagopalan KV (1976) The mechanism of conversion of rat liver xanthine dehydrogenase from an NAD+-dependent form (type D) to an O2-dependent form (type O). Acta Biochem Biophys 172:365–379

    Article  Google Scholar 

  40. Weiss SJ (1986) Oxygen, ischaemia and inflammation. Acta Physiol Scand suppl 548:9–37

    PubMed  Google Scholar 

  41. Werns SW, Shea MJ, Lucchesi BR (1986) Free radicals and myocardial injury: Pharmacologic implications. Circulation 74:1–5

    PubMed  Google Scholar 

  42. Woodward B, Zakaria MNM (1985) The effects of some free radical scavengers on reperfusion-induced arrhythmias in the isolated rat heart. J Mol Cell Cardiol 17:485–493

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, I.A., Blackwell, C.P. & Woodward, B. Chemiluminescence measurements of xanthine oxidase and xanthine dehydrogenase activity in four types of cardiovascular cell. Basic Res Cardiol 83, 392–400 (1988). https://doi.org/10.1007/BF02005825

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02005825

Key words

Navigation