Skip to main content
Log in

KCl cotransport: A mechanism for basolateral chloride exit inNecturus gallbladder

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

K+ and Cl-selective double-barreled microelectrodes were used to study the effect of changes in external K+ concentration on intracellular Cl activity (a iCl ) in epithelial cells ofNecturus gallbladder. Decreasing the K+ concentration simultaneously in both bathing solutions produced a decrease ina iCl . Steady-state values ofa iCl were related to the values of the chamical potential gradient for K+ (ΔμK) across either the apical or the basolateral cell membrane. A similar dependence betweena iCl and ΔμK appeared when the K+ concentration was changed in the serosal solution only. This indicates thata iCl depends on ΔμK across the basolateral membrane.a iCl was virtually independent of the membrane potential. This supports the idea that both the mucosal and the basolateral membranes ofNecturus gallbladder cells have very low passive permeabilities to Cl. These results indicate that the exit of Cl fromNecturus gallbladder cells is driven by ΔμK across the basolateral membrane, and suggest that a KCl electroneutral coupled mechanism in this membrane plays an important role in transcellular Cl transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, W.McD., Garcia-Diaz, J.F. 1981. Criteria for the use of microelectrodes to measure membrane potentials in epithelial cells.In. Epithelial Ion and Water Transport. A.D.C. Macknight and J.P. Leader, editors. pp. 43–53. Raven, New York

    Google Scholar 

  • Armstrong, W.McD., Youmans, S.J. 1980. The role of bicarbonate ions and adenosine 3′,5′-monophosphate (cAMP) in chloride transport by epithelial cells of bullfrog small intestine.Ann. N.Y. Acad. Sci. 341:139–155

    PubMed  Google Scholar 

  • Baxendale, L.M., Armstrong, W.McD. 1983. Basolateral Cl−HCO 3 exchange is slight or absent inNecturus gallsladder.Fed. Proc. 42:1353

    Google Scholar 

  • Cremaschi, D., Henin, S. 1975. Na+ and Cl transepithelial routes in rabbit gallbladder. Tracer analysis of the transports.Pfluegers Arch. 361:33–41

    Google Scholar 

  • Duffey, M.E., Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport.J. Membrane Biol. 42:229–245

    Google Scholar 

  • Ericson, A-C., Spring, K.R. 1982. Coupled NaCl entry intoNecturus gallbladder epithelial cells.Am. J. Physiol. 243:C140-C145

    PubMed  Google Scholar 

  • Frizzell, R.A., Duffey, M.E. 1980. Chloride activities in epithelia.Fed. Proc. 39:2860–2864

    PubMed  Google Scholar 

  • Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8

    PubMed  Google Scholar 

  • Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259–301

    Google Scholar 

  • Garcia-Diaz, J.F., Armstrong, W.McD. 1980. The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences inNecturus gallbladder.J. Membrane Biol. 55:213–222

    Google Scholar 

  • Garcia-Diaz, J.F., Corcia, A., Armstrong, W.McD. 1983. Intracellular chloride activity and apical membrane chloride conductance inNecturus gallbladder.J. Membrane Biol. 73:145–155

    Google Scholar 

  • Glynn, I.M., Karlish, S.J.D. 1975. The sodium pump.Annu. Rev. Physiol. 37:13–55

    PubMed  Google Scholar 

  • Gogelein, H., Van Driessche, W. 1981. Noise analysis of the K+ current through the apical membrane ofNecturus gallbladder.J. Membrane Biol. 63:242–254

    Google Scholar 

  • Guggino, W.B., Boulpaep, E.L., Giebisch, G. 1982. Electrical properties of chloride transport acrossNecturus proximal tubule.J. Membrane Biol. 65:185–196

    Google Scholar 

  • Gunter-Smith, P.J., Schultz, S.G. 1982. Potassium transport and intracellular potassium activities in rabbit gallbladder.J. Membrane Biol. 65:41–47

    Google Scholar 

  • Heintze, K., Petersen, K-U., Wood, J.R. 1981. Effects of bicarbonate on fluid and electrolyte transport by guinea pig and rabbit gallbladder. Stimulation of absorption.J. Membrane Biol. 62:175–181

    Google Scholar 

  • Moody, G.J., Thomas, J.D.R. 1971. Selective ion sensitive electrodes. Merrow, England

    Google Scholar 

  • Reuss, L. 1979. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. III. Ionic permeability of the basolateral call membrane.J. Membrane Biol. 47:239–259

    Google Scholar 

  • Reuss, L., Bello-Reuss, E., Grady, T.P. 1979. Effects of ouabain on fluid transport and electrical properties ofNecturus gallbladder.J. Gen. Physiol. 73:385–402

    PubMed  Google Scholar 

  • Reuss, L., Cheung, L.Y., Grady, T.P. 1981. Mechanisms of cation permeation across apical cell membrane ofNecturus gallbladder: Effects of luminal pH and divalent cations on K+ and Na+ permeability.J. Membrane Biol. 59:211–224

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975a. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions.J. Membrane Biol. 25:115–139

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975b. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. II. Ionic permeability of the apical cell membrane.J. Membrane Biol. 25:141–161

    Google Scholar 

  • Reuss, L., Grady, T.P. 1979. Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium.J. Membrane Biol. 51:15–31

    Google Scholar 

  • Reuss, L., Weinman, S.A. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium.J. Membrane Biol. 49:345–362

    Google Scholar 

  • Suzuki, K., Kottra, G., Kampmann, L., Fromter, E. 1982. Square wave pulse analysis of cellular and paracellular conductance pathways inNecturus gallbladder epithelium.Pfluegers Arch 394:302–312

    Google Scholar 

  • Teulon, J., Anagnostopoulos, T. 1982. Proximal cell K+ activity: Technical problems and dependence on plasma K+ concentration.Am. J. Physiol. 243:F12-F18

    PubMed  Google Scholar 

  • Os, C.H. van, Slegers, J.F.G. 1975. The electrical potential profile of gallbladder epithelium.J. Membrane Biol. 24:341–363

    Google Scholar 

  • Weinman, S.A., Reuss, L. 1982. Na+−H+ exchange at the apical membrane ofNecturus gallbladder.J. Gen. Physiol. 80:299–321

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corcia, A., Armstrong, W.D. KCl cotransport: A mechanism for basolateral chloride exit inNecturus gallbladder. J. Membrain Biol. 76, 173–182 (1983). https://doi.org/10.1007/BF02000617

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02000617

Key Words

Navigation