Skip to main content
Log in

Effect of 1,3-butanediol on cerebral energy metabolism. Comparison with β-hydroxybutyrate

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Previous studies have shown that 1,3-butanediol (BD) has beneficial effects in experimental models of hypoxia or ischemia but the mechanism by which it exerts its protective effects remains unknown. BD is converted in the body to β-hydroxybutyrate (BHB) and it has been proposed that its effects were linked to its ketogenic effect. The effects of BD (25 and 50 mmol/kg) on cerebral energy metabolism of rats were studied by measuring the cerebral level of energy metabolites and by evaluating the cerebral metabolic rate according to the Lowry's method. BD induced an increase in [cortical glucose]/[plasma glucose] ratio which was associated with a decrease in lactate level and an increase in glucose and glycogen stores. In contrast, BHB treatment which mimicked hyperketonemia equivalent to BD did not modify cerebral glycolysis metabolites. Calculation of the energy reserve flux after decapitation showed that BD did not reduce the cerebral metabolic rate excluding a protective effect due to a depressant, barbiturate-like, action. These results suggest that BD induces a reduction of cerebral glycolytic rate. However, the effect is not linked to hyperketonemia but might be due to intracerebral conversion of BD to BHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Combs, D.J., and D'Alecy, L.G. (1987). Motor performance in rats exposed to severe forebrain ischemia: effect of fasting and 1,3-butanediol.Stroke 18: 503–511.

    PubMed  Google Scholar 

  • Dagnelie, P. (1975).Théorie et méthodes statistiques., Les presses agronomiques de Gembloux, Belgique.

    Google Scholar 

  • De Vivo, D.C., Leckie, M.P., Ferrendelli, J.S., and McDougal, D.B. (1978). Chronic ketosis and cerebral metabolism.Ann. Neurol. 3: 331–337.

    Article  PubMed  Google Scholar 

  • Demerle-Pallardy, C., Duverger, D., Spinnewyn, B., Pirotzky, E., and Braquet, P. (1991). Peripheral type benzodiazepine binding sites following transient forebrain ischemia in the rat: effect of neuroprotective drugs.Brain Res. 565: 312–320.

    Article  PubMed  Google Scholar 

  • Eiger, S.M., Kirsch, J.R., and D'Alecy, L.G. (1980). Hypoxic tolerance enhanced by β-hydroxybutyrate-glucagon in the mouse.Stroke 11: 513–517.

    PubMed  Google Scholar 

  • Folbergrova, J., Lowry, O.H., and Passonneau, J.V. (1970). Changes in metabolites of the energy reserves in individual layers of mouse cerebral cortex and subjacent white matter during ischaemia and anesthesia.J. Neurochem. 17: 1155–1162.

    PubMed  Google Scholar 

  • Folbergrova, J., Ponten, U., and Siesjö, B.K. (1972). Patterns of changes in brain carbohydrate metabolites, aminoacids and organic phosphates at increased carbon dioxide tensions.J. Neurochem. 22: 1115–1125.

    Google Scholar 

  • Frye, G.D., Chapin, R.E., Vogel, R.A., Mailman, R.B., Kilts, C.D., Mueller, R.A., and Breese, G.R. (1981). Effects of acute and chronic 1,3-butanediol treatment on central nervous system function: a comparison with ethanol.J. Pharmacol. Exp. Ther. 216: 306–314.

    PubMed  Google Scholar 

  • Gjedde, A., and Crone, C. (1975). Induction processes in blood-brain transfer of ketone bodies during starvation.Am. J. Physiol. 229: 1165–1169.

    PubMed  Google Scholar 

  • Gueldry, S., Marie, C., Rochette, L., and Bralet, J. (1990). Beneficial effect of 1,3-butanediol on cerebral energy metabolism and edema following brain embolization in rats.Stroke 21: 1458–1463.

    PubMed  Google Scholar 

  • Gueldry, S., Marie, C., Christofi, G., Sarna, G.S., and Obrenovitch, T.P. (1994). Changes in extracellular and rat brain tissue concentrations of D-β-hydroxybutyrate after 1,3-butanediol treatment.J. Neurochem. 62: 223–226.

    PubMed  Google Scholar 

  • Kirsch, J.R., and D'Alecy, L.G. (1979). Effect of altered availability of energy-yielding substrates upon survival from hypoxia in mice.Stroke 10: 288–291.

    PubMed  Google Scholar 

  • Kirsch, J.R., D'Alecy, L.G., and Mongroo, P. (1980). Butanediol induced ketosis increases tolerance to hypoxia in the mouse.Stroke 11: 506–513.

    PubMed  Google Scholar 

  • Kirsch, J.R., and D'Alecy, L.G. (1984). Hypoxia induced preferential ketone utilization by rat brain slices.Stroke 15: 319–323.

    PubMed  Google Scholar 

  • Kogure, K., Busto, R., Scheinberg, P., and Reinmuth, O. (1975). Dynamics of cerebral metabolism during moderate hypercapnia.J. Neurochem. 24: 471–478.

    PubMed  Google Scholar 

  • Kuschinsky, W., Suda, S., and Sokoloff, L. (1981). Local cerebral glucose utilization and blood flow during metabolic acidosis.Am. J. Physiol. 241: H 772-H 777.

    Google Scholar 

  • Levy, D.E., and Duffy, T.E. (1975). Effect of ischemia on energy metabolism in the gerbil cerebral cortex.J. Neurochem. 24: 1287–1289.

    PubMed  Google Scholar 

  • Lowry, O.H., Passonneau, J.V., Hasselberger, F.X., and Schultz, D.W. (1964). Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain.J. Biol. Chem. 239: 18–30.

    PubMed  Google Scholar 

  • Lowry, O.H., and Passonneau, J.V. (1972).A Flexible System of Enzymatic Analysis., Academic Press, New York.

    Google Scholar 

  • Lundgren, J., Smith, M.J., Mans, A.M., and Siesjö, B.K. (1992). Ischemic brain damage is not ameliorated by 1,3-butanediol in hyperglycemic rats.Stroke 23: 719–724.

    PubMed  Google Scholar 

  • Lundy, E.F., Luyckx, A., Combs, D.J., Zelenock, G., and D'Alecy, L.G. (1984). Butanediol induced cerebral protection from ischemic-hypoxia in the instrumented Levine rat.Stroke 15: 547–552.

    PubMed  Google Scholar 

  • Lundy, E.F., Dykstra, J., Luyckx, B., Zelenock, G.B., and D'Alecy L.G. (1985). Reduction of neurologic deficit by 1,3-butanediol induced ketosis in Levine rats.Stroke 16: 855–860.

    PubMed  Google Scholar 

  • Lundy, E.F., Klima, L.D., Huber, T.S., Zelenock, G.B., and D'Alecy, LG (1987). Elevated blood ketone and glucagon levels cannot account for 1,3-butanediol induced cerebral protection in the Levine rat.Stroke 18: 217–222.

    PubMed  Google Scholar 

  • Lust, W.D., Passonneau, J.V., and Crites, S.K. (1975). The measurement of glycogen in tissues by amylo-α-1,6-glucosidase after destruction of preexisting glucose.Analyt. Biochem. 68: 328–331.

    Article  PubMed  Google Scholar 

  • MacMillan, V. (1988). Influence of ethanol on the energy metabolism of ischemic and postischemic brain.J. Cereb. Blood Flow Metab. 8: 335–340.

    PubMed  Google Scholar 

  • Marie, C., Bralet, A.M., and Bralet J. (1987). Protective action of 1,3-butanediol in cerebral ischemia. A neurologic, histologic, and metabolic study.J Cereb. Blood Flow Metab. 7: 794–800.

    PubMed  Google Scholar 

  • Marie, C., Bralet, A.M., Gueldry, S., and Bralet, J. (1990). Fasting prior to transient cerebral ischemia reduces delayed neuronal necrosis.Metab. Brain Dis. 5: 65–75.

    Article  PubMed  Google Scholar 

  • Miller, A.L., Kiney, C.A., Corddry, D.H., and Staton, D.M. (1982). Interactions between glucose and ketone body use by developing brain.Dev. Brain Res. 4: 443–450.

    Article  Google Scholar 

  • Myles, W.S. (1976). Survival of fasted rats exposed to altitude.Can. J. Pharmacol. 54: 883–886.

    Google Scholar 

  • Nilsson, B., Norberg, K., Nordström, C.H., and Siesjö, B.K. (1975). Rate of energy utilization in the cerebral cortex of rats.Acta Physiol. Scand. 93: 569–571.

    PubMed  Google Scholar 

  • Nordström, C.H., and Siesjö, B.K. (1978). Influence of phenobarbital on changes in the metabolites of the energy reserve of the cerebral cortex following complete ischemia.Acta Physiol. Scand. 104: 271–280.

    PubMed  Google Scholar 

  • Pardridge, W.M. (1983). Brain metabolism: a perspective from the blood-brain barrier.Physiol. Rev. 63: 1481–1535.

    PubMed  Google Scholar 

  • Pollay, M., and Stevens, F. (1980). Starvation-induced changes in transport of ketone bodies across the blood-brain barrier.J. Neurosci. Res. 5: 163–172.

    Article  PubMed  Google Scholar 

  • Ponten, U., Ratcheson, R.A., Salford, L.G., and Siesjö, B.K. (1973). Optimal freezing conditions for cerebral metabolites in rats.J. Neurochem. 21: 1127–1138.

    PubMed  Google Scholar 

  • Raskin, N.H., and Sokoloff, L. (1970). Alcohol dehydrogenase activity in rat brain and liver.J. Neurochem. 17: 1677–1687.

    PubMed  Google Scholar 

  • Raskin, N.H., and Sokoloff, L. (1972). Enzymes catalysing ethanol metabolism in neural and somatic tissues of the rat.J. Neurochem. 19: 273–282.

    PubMed  Google Scholar 

  • Ratcheson, R.A., Bilezikjian, L., and Ferrendelli, J.A. (1977). Effect of nitrous oxide anaesthesia upon energy metabolism.J. Neurochem. 28: 223–225.

    PubMed  Google Scholar 

  • Robertson, C.S., Goodman, J.C., Narayan, R.K., Contant, C.F., and Grossman, R.G. (1991). The effect of glucose administration on carbohydrate metabolism after head injury.J. Neurosurg. 74: 43–50.

    PubMed  Google Scholar 

  • Roucher, P., Corrèze, J.L., Méric, P., Seylaz, P., Mispelter, J., Tiffon, B., and Lhost, J.M. (1991). 1,3-Butanediol protects the brain's energy-producing capacity during reversible ischemia (abstract).J. Cereb. Blood Flow Metab. 11 (suppl 2) : S748.

  • Ruderman, N.B., Ross, P.S., Berger, M., and Goodman, M.N. (1974). Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats.Biochem. J. 138: 1–10.

    PubMed  Google Scholar 

  • Shapiro, H.M. (1985). Barbiturates in brain ischemia.Brit. J. Anaesth. 57: 82–95.

    PubMed  Google Scholar 

  • Siesjö, B.K., Folbergrova, J., and MacMillan, V. (1972). The effect of hypercapnia upon intracellular pH in the brain evaluated by the bicarbonate-carbonic acid method and the creatine phosphokinase equilibrium.J. Neurochem. 19: 2483–2495.

    PubMed  Google Scholar 

  • Siesjö, BK (1981). Cell damage in the brain: a speculative synthesis.J. Cereb. Blood Flow Metab. 1: 155–185.

    PubMed  Google Scholar 

  • Sokoloff, L. (1973). Metabolism of ketone bodies by the brain.Ann. Rev. Med. 24: 271–280.

    Article  PubMed  Google Scholar 

  • Tate, R.L., Mehlman, M.A., and Tobin, R. (1971). Metabolic fate of 1,3-butanediol in the rat: conversion to β-hydroxybutyrate.J. Nutr. 101 : 1719–1726.

    PubMed  Google Scholar 

  • Williamson, D.H., and Mellanby, J. (1974). D-(-)-3-hydroxybutyrate. In Bergmeyer, H.U. (ed.),Methods of enzymatic analysis, Academic Press, New York, pp. 1836–1839.

    Google Scholar 

  • Yager, J.Y., Brucklacher, R.M., and Vannucci, R.C. (1991). Effect of mild hypoglycemia on hypoxic-ischemic brain damage in the immature rat (abstract).J. Cereb. Blood Flow Metab. 11 (suppl 2) : S198.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gueldry, S., Bralet, J. Effect of 1,3-butanediol on cerebral energy metabolism. Comparison with β-hydroxybutyrate. Metab Brain Dis 9, 171–181 (1994). https://doi.org/10.1007/BF01999770

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01999770

Key words

Navigation