Skip to main content
Log in

Voltage-dependent, monomeric channel activity of colicin E1 in artificial membrane vesicles

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The dependence of colicin channel activity on membrane potential and peptide concentration was studied in large unilamellar vesicles using colicin E1, its COOH-terminal thermolytic peptide and other channel-forming colicins. Channel activity was assayed by release of vesicle-entrapped chloride, and could be detected at a peptide: lipid molar ratio as low as 10−7. The channel activity was dependent on the magnitude of atrans-negative potassium diffusion potential, with larger potentials yielding faster rates of solute efflux. For membrane potentials greater than −60mV (K +in /K +out ≥10), addition of valinomycin resulted in a 10-fold increase in the rate of Cl efflux. A delay in Cl efflux observed when the peptide was added to vesicles in the presence of a membrane potential implied a potential-independent binding-insertion mechanism. The initial rate of Cl efflux was about 1% of the single-channel conductance, implying that only a small fraction of channels were initially open, due to the delay or latency of channel formation known to occur in planar bilayers.

The amount of Cl released as a function of added peptide increased monotonically to a concentration of 0.7 ng peptide/ml, corresponding to release of 75% of the entrapped chloride. It was estimated from this high activity and consideration of vesicle number that 50–100% of the peptide molecules were active. The dependence of the initial rate of Cl efflux on peptide concentration was linear to approximately the same concentration, implying that the active channel consists of a monomeric unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ames, B.N., Dubin, D.T. 1960. The role of polyamines in the neutralization of bacteriophage DNA.J. Biol. Chem. 235:769–775

    PubMed  Google Scholar 

  2. Bishop, L.J., Cohen, F.S., Davidson, V.L., Cramer, W.A. 1986. Chemical modification of the two histidine and single cysteine residues in the channel-forming domain of colicin E1.J. Membrane Biol. 92:237–245

    Google Scholar 

  3. Bruggemann, E.P., Kayalar, C. 1986. Determination of the molecularity of the colicin E1 channel by stopped-flow ion kinetics.Proc. Natl. Acad. Sci. USA 83:4273–4276

    PubMed  Google Scholar 

  4. Brunden, K.R., Cramer W.A., Cohen, F.S. 1984. Purification of a small receptor-binding peptide from the central region of the colicin E1 molecule.J. Biol. Chem. 259:190–196

    PubMed  Google Scholar 

  5. Bullock, J.O., Cohen, F.S. 1986. Octyl glucoside promotes incorporation of channels into neutral planar phospholipid bilayers. Studies with colicin la.Biochim. Biophys. Acta 856:101–108

    PubMed  Google Scholar 

  6. Bullock, J.O., Cohen, F.S., Dankert, J.R., Cramer, W.A. 1983. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide.J. Biol. Chem. 258:9908–9912

    PubMed  Google Scholar 

  7. Cleveland, B.M., Slatin, S., Finkelstein, A., Levinthal, C., 1983. Structure-function relationships for a voltage-dependent ion channel: Properties of C-terminal fragments of colicin E1.Proc. Natl. Acad. Sci. USA 80:3706–3710

    PubMed  Google Scholar 

  8. Dankert, J.R. 1982. On the mechanism of penetration of the colicin E1 molecule through the cell envelope. Ph.D. Thesis, Purdue University, 117 pp.

  9. Dankert, J.R., Uratani, Y., Grabau, C., Cramer, W.A., Hermodson, M. 1982. On a domain structure of colicin E1.J. Biol. Chem. 257:3857–3863

    PubMed  Google Scholar 

  10. Davidson, V.L., Brunden, K.R., Cramer, W.A. 1985. Acidic pH requirement for insertion of colicin E1 into artificial membrane vesicles: Relevance to the mechanism of action of colicins and certain toxins.Proc. Natl. Acad. Sci. USA 82:1386–1390

    PubMed  Google Scholar 

  11. Davidson, V.L., Cramer, W.A., Bishop, L.J., Brunden, K.R. 1984. Dependence of the activity of colicin E1 in artificial membrane vesicles on pH, membrane potential, and vesicle size.J. Biol. Chem. 259:594–600

    PubMed  Google Scholar 

  12. Farid-Sabet, S. 1982. Interaction of125I-labeled colicin E1 withEscherichia coli.J. Bacteriol. 150:1383–1390

    PubMed  Google Scholar 

  13. Guy, H.R. 1983. A model of colicin E1 membrane channel protein structure.Biophys. J. 41:363a

    Google Scholar 

  14. Jacob, F., Simonovitch, L., Wollman, E. 1952. Sur la biosynthèse d'une colicine et sur son mode d'action.Ann. Inst. Pasteur 83, 295–315

    Google Scholar 

  15. Kagawa, Y., Yacker, E. 1971. Partial resolution of the enzymes catalyzing oxidative phosphorylation: XXV. Reconstitution of vesicles catalyzing32P t -adenosine triphosphate exchange.J. Biol. Chem. 246:5477–5487

    Google Scholar 

  16. Kayalar, C., Erdheim, G.R., Shanafelt, A., Goldman, K. 1984. Colicin channels and cellular immunity.Curr. Topics Cell. Reg. 24:301–312

    Google Scholar 

  17. Kayalar, C., Luria, S.E. 1979. Channel formation by colicin K on liposomes.In: Membrane Bioenergetics. C.P. Lee, G. Schatz, and L. Ernster, editors, pp. 297–306. Addison-Wesley, New York

    Google Scholar 

  18. Liu, Q.R., Crozel, V., Levinthal, F., Slatin, S., Finkelstein, A., Levinthal, C. 1986. A very short peptide makes a voltage-dependent ion channel: The critical length of the channel domain of colicin E1.Proteins 1:218–229

    PubMed  Google Scholar 

  19. Martinez, M.C., Lazdunski, C., Pattus, F. 1983. Isolation, molecular and functional properties of the C-terminal domain of colicin A.EMBO J 2:1501–1507

    PubMed  Google Scholar 

  20. Ohno-Iwashita, Y., Imahori, K. 1982. Assignment of the functional loci in the colicin E1 molecule by characterization of its proteolytic fragments.J. Biol. Chem. 257:6446–6451

    PubMed  Google Scholar 

  21. Olson, F., Hunt, C.A., Szoka, F.C., Vail, W.J., Papahadjopoulos, D. 1979. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes.Biochim. Biophys. Acta 557:9–23

    PubMed  Google Scholar 

  22. Pattus, F., Heitz, F., Martinez, C., Provencher, S.W., Lazdunski, C. 1985. Secondary structure of the pore-forming colicin A and its C-terminal fragment.Eur. J. Biochem. 152:681–689

    PubMed  Google Scholar 

  23. Pattus, F., Martinez, M.C., Dargent, B., Cavard, D., Verger, R., Lazdunski, C. 1983. Interaction of colicin A with phospholipid monolayers and liposomes.Biochemistry 22:5698–5703

    Google Scholar 

  24. Peterson, A.A., Cramer, W.A. 1987. Membrane-potential and concentration-dependence of colicin E1 channel formation in artificial membrane vesicles.Biophys. J. 51:249a

    Google Scholar 

  25. Pressler, V., Braun, V., Wittmann-Liebold, B., Benz, R. 1986. Structural and functional properties of colicin B.J. Biol. Chem. 261:2654–2659

    PubMed  Google Scholar 

  26. Schein, S., Kagan, B., Finkelstein, A. 1978. Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes.Nature (London) 276:159–163

    Google Scholar 

  27. Schwartz, S.A., Helinski, D.R. 1971. Purification and characterization of colicin E1.J. Biol. Chem. 246:6318–6327

    PubMed  Google Scholar 

  28. Shiver, J.W., Peterson, A.A. Widger, W.R., Cramer, W.A. 1987. Prediction of bilayer spanning domains of hydrophobic and amphipathic membrane proteins: Applications to the cytochromeb and colicin families.Meth. Enzymol. (in press)

  29. Slatin, S., Raymond, L., Finkelstein, A. 1986. Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: The role of protein translocation.J. Membrane Biol. 92:247–254

    Google Scholar 

  30. Tokuda, H., Konisky, J. 1978. Effect of colicin Ia and E1 on ion permeability of liposomes.Proc. Natl. Acad. Sci. USA 75:6167–6171

    Google Scholar 

  31. Veatch, W.R., Mathies, R., Eisenberg, M., Stryer, L. 1975. Simultaneous fluorescence and conductance of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A.J. Mol. Biol. 99:75–92

    PubMed  Google Scholar 

  32. Youkharibache, P., Fine, R., Levinthal, C. 1987. Possible conformations of the colicin E1 voltage-switchable channel.Biophys. J. 51:83a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, A.A., Cramer, W.A. Voltage-dependent, monomeric channel activity of colicin E1 in artificial membrane vesicles. J. Membrain Biol. 99, 197–204 (1987). https://doi.org/10.1007/BF01995700

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01995700

Key Words

Navigation