Skip to main content
Log in

Structural collapse of plant materials during freeze-drying

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Structural collapse of plant materials, which affects quality of foods, was studied. Fresh and osmotically dehydrated plant materials were freeze-dried at several chamber pressures, to achieve initial sample temperatures that were below (−55‡C), near (−45‡C), or above (−28‡C) their glass transition temperature (T g=−45‡C). Freeze-drying at −55‡C resulted in products retaining their original volume. When the initial sample temperature was increased aboveT g, the resulting freeze-dried samples collapsed. When the initial sample temperature was increased above the temperature of ice melting (Tm), the samples collapsed further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Farkas and R. R. Singh, Food J. Sci., 56 (1991) 611.

    Google Scholar 

  2. M. N. Islam and J. M. Flink, Food Technol., 17 (1982) 387.

    Google Scholar 

  3. V. T. Karathanos, S. A. Anglea and M. Karel, Drying Technol., 11 (1993) 1005.

    Google Scholar 

  4. R. J. Bellows and C. J. King, AIChE Symposium Series, 69 (132) (1973) 33.

    Google Scholar 

  5. H. Watanabe, Y. Hagura, M. Ishikawa, T. Mihori and Y. Sakai, J. Food Proc. Eng., 14 (1991) 1.

    Google Scholar 

  6. Y. Roos and M. Karel, Cryo-Letters, 12 (1991) 367.

    Google Scholar 

  7. Y. Roos and M. Karel, J. Food Sci., 56 (1991) 1676.

    Google Scholar 

  8. H. Levine and L. Slade, J. Chem. Soc. Faraday Transactions, 84 (1988) 2619.

    Google Scholar 

  9. A. M. Cocero and J. L. Kokini, J. Rheology, 35 (1991) 257.

    Google Scholar 

  10. M. Pikal and S. Shah, Intl. J. Pharmaceutics, 62 (1990) 165.

    Google Scholar 

  11. C. J. King, CRC Critical Reviews in Food Technology, 1 (1970) 379.

    Google Scholar 

  12. R. J. Bellows and C. J. King, Cryobiology, 9 (1972) 559.

    PubMed  Google Scholar 

  13. J. Ferry, “Viscoelastic Properties of Polymers” 3rd Ed., John Wiley and Sons, New York, 1980, p. 264.

    Google Scholar 

  14. M. L. Williams, R. F. Landel and J. D. Ferry, J. Am. Chem. Soc., 77 (1955) 3701.

    Google Scholar 

  15. R. E. Pitt and J. L. Chen, Trans. ASAE, 26 (1983) 1275.

    Google Scholar 

  16. S. A. Anglea, V. T. Karathanos and M. Karel, Biotechnology Prog., 9 (1993) 204.

    Google Scholar 

  17. C. Y. Lee, R. S. Shallenberger and M. T. Vittum, New York's Food and Life Sciences Bulletin, 1 (1970) August 1.

  18. M. P. Hwang and K. Hayakawa, J. Food Sci., 45 (1980) 1400.

    Google Scholar 

  19. J. J. Aklonis and W. J. MacKnight, Introduction to Polymer Viscoselasticity, J. Wiley and Sons, New York, 1983, p. 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is publication No. D-10565-3-92 of the New Jersey Agricultural Experiment Station. The authors are thankful to CPC International for their financial support. The assistance of Dr. Y. H. Roos is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karathanos, V.T., Anglea, S.A. & Karel, M. Structural collapse of plant materials during freeze-drying. Journal of Thermal Analysis 47, 1451–1461 (1996). https://doi.org/10.1007/BF01992839

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01992839

Keywords

Navigation