Skip to main content
Log in

Vitrification of trehalose by water loss from its crystalline dihydrate

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Trehalose dihydrate, on careful dehydration below its fusion point, retains its original crystal facets but becomes X-ray amorphous, an unusual example of direct crystal-to-glass transformation. From DSC studies, the glass obtained by this route seems to be of abnormally low enthalpy, but after an initial scan, the normal form of glass transition is exhibited, withT g=115‡C, a higher value than previously reported. We give a preliminary thermal and mechanical characterization of this material and find it to be a very fragile liquid. The highT g is shown to rationalize the exceptionally high water content of the trehalose+water solution that vitrifies at ambient temperature (i.e.T g=298 K), and hence helps explain its use by Nature as a desiccation protectant. The spontaneous vitrification of crystalline materials during desolvation is related to the phenomenology of pressure-induced or decompression-induced vitrification of crystals via the concept of limiting metastability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Crowe and J. S. Clegg, eds., Anhydrobiosis, Dowden, Hutchinson and Ross, Stroudsburg, PA 1973.

    Google Scholar 

  2. J. H. Crowe, L. M. Crowe and R. Mouradian, Cryobiology, 20 (1983) 346.

    PubMed  Google Scholar 

  3. K. Bloch, in Essays in Biochemistry, Yale University Press, New Haven, CT 1994.

    Google Scholar 

  4. J. L. Green and C. A. Angell, J. Phys. Chem., 93 (1989) 2880.

    Google Scholar 

  5. B. Roser, Biopharm, 4 (1991) 47.

    Google Scholar 

  6. H. Levine and L. Slade, Biopharm., 5 (1992) 36.

    Google Scholar 

  7. B. J. Aldous, A. D. Auffret and F. Franks, Cryo Letters, 16 (1995) 181.

    Google Scholar 

  8. S. J. Hagen, J. Hofrichter and W. A. Eaton, Science, 269 (1995) 959.

    PubMed  Google Scholar 

  9. S. J. Hagen, J. Hofrichter, H. F. Bunn and W. A. Eaton, Transfusion Clinique et Biologique, 6 (1995) 423.

    Google Scholar 

  10. D. Mishima, L. D. Calvert and E. Whalley, Nature, 310 (1984) 393.

    Google Scholar 

  11. X. L. Yeh, K. Samwer and W. L. Johnson, Appl. Phys. Lett., 42 (1983) 242.

    Google Scholar 

  12. R. Schwarz and W. L. Johnson, Phys. Rev. Lett., 51 (1983) 415.

    Google Scholar 

  13. W. L. Johnson, Annals NY Acad. Sci., 484 (1986) 13.

    Google Scholar 

  14. G. W. Scherer and P. C. Schultz, in Glass Science and Technology, Vol. 1, Glassforming Systems, D. R. Uhlmann and N. J. Kreidl, eds., Academic Press, NY 1983.

    Google Scholar 

  15. C. A. Angell, Science, 267 (1995) 1924.

    Google Scholar 

  16. N. Onodera, H. Suga and S. Seki, Bull. Chem. Soc. Jpn., 41 (1968) 2222.

    Google Scholar 

  17. A. Saleki-Gerhardt, J. G. Stowell, S. R. Byrn and G. Zografi, J. Pharm. Sci., 84 (1996) 318.

    Google Scholar 

  18. F. Sciortino, U. Essman, H. E. Stanley, M. Hemmati, J. Shao, G. H. Wolf and C. A. Angell, Phys. Rev. E, 52 (1995) 6484, and many refs cited therein.

    Google Scholar 

  19. Another possibility can be envisaged in which an electrochemical potential is used to remove mobile ions from a crystal structure until it destabilizes. The mobile species could be either positive ions plus compensating electrons, or small mobile cations and anions which would be removed simultaneously at opposite electrodes.

  20. E. Y. Shalaev and F. Franks, Thermochim. Acta, 255 (1995) 49.

    Google Scholar 

  21. J. Fan, J. Green and C. A. Angell (to be published).

  22. G. Brown et al., Acta Cryst., B28 (1972) 3154.

    Google Scholar 

  23. J. Brady, personal communication.

  24. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley, NY 1980.

    Google Scholar 

  25. R. Böhmer, H. Senapati, and C. A. Angell, J. Non-Cryst. Sol., 131–133 (1991) 182.

    Google Scholar 

  26. C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. DeBolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Elterman, R. P. Moeller, H. A. Sasabe and J. A. Wilder, Ann. NY Acad. Sci., 279 (1976) 15.

    Google Scholar 

  27. L. Slade and H. Levine, Pure Appl. Chem., 60 (1988) 1841.

    Google Scholar 

  28. P. Tomasik, Adv. Carbohydr. Chem. Biochem., 47 (1939) 203.

    Google Scholar 

  29. J. Fan and C. A. Angell, Thermochim. Acta, 266 (1995) 9.

    Google Scholar 

  30. K. Ngai, Solid State Ionics, 5 (1981) 27.

    Google Scholar 

  31. Y. H. Roos, Carbohydr. Res., 238 (1993) 39.

    Google Scholar 

  32. C. J. Roberts and F. Franks, J. Chem. Soc. Faraday Trans., 92 (1996).

  33. C. van den Berg, R. H. M. Hatley and F. Franks, Cryo Letter, 12 (1991) 113.

    Google Scholar 

  34. J. L. Green, J. Fan and C. A. Angell, J. Phys. Chem., 98 (1994) 13780.

    Google Scholar 

  35. I. E. T. Iben, D. Braunstein, W. Doster, H. Frauenfelder, M. K. Hong, J. B. Johnson, S. Luck, P. Ormos, A. Schulte, P. J. Steinback, A. H. Xie, and R. D. Young, Phys. Rev. Lett., 62 (1989) 1916.

    PubMed  Google Scholar 

  36. I. V. Sochava and O. I. Smirnova, Food Hydrocolloids, 6 (1993) 513.

    Google Scholar 

  37. C. A. Angell, R. D. Bressel, J. L. Green, H. Kanno, M. Oguni and E. J. Sare, J. Food Eng., 22 (1994) 115.

    Google Scholar 

  38. C. A. Angell, J. Non-Cryst. Sol., 131–133 (1991) 13.

    Google Scholar 

  39. Previously, most hydrogen-bonded liquids had been found to be intermediate between strong and fragile in character [C. A. Angell, in Hydrogen-Bonded Liquids, J. C. Dore and J. Teixeira, eds. NATO-ASI Series, Plenum Press, NY 1990]. With four-OH groups per saccharide unit, one trehalose molecule can form H-bonds to many others in its neighborhood.

  40. N. Karger and H.-D. Lüdemann, Z. Naturforsch. C, Biosc., 46 (1991) 313.

    Google Scholar 

  41. M. Hemmati, A. Chizmeshya, G. H. Wolf, P. H. Poole, J. Shao and C. A. Angell, Phys. Rev. B, 51 (1995) 14, 841.

    Google Scholar 

  42. B. J. Skinner and J. J. Fahy, J. Geophys. Res., 68 (1963) 5595.

    Google Scholar 

  43. C. A. Angell, Chem. Rev., 90 (1990) 523.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the NSF under Solid State Chemistry Grant No. DMR91 08028-002.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, S.P., Fan, J., Green, J.L. et al. Vitrification of trehalose by water loss from its crystalline dihydrate. Journal of Thermal Analysis 47, 1391–1405 (1996). https://doi.org/10.1007/BF01992835

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01992835

Keywords

Navigation