Skip to main content
Log in

A DSC study of the effects of sugars on thermal properties of rice starch gels before and after aging

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Thermal characterization of gelatinized binary rice starch-water and ternary starch-sugar-water gels before and after aging was carried out using differential scanning calorimetry. The glass transition temperature of the maximally freeze-concentrated solution (Tg) in both fresh and aged gels was observed to decrease progressively with increasing sugar concentration. Aging of the gels generally shiftedTg to higher temperatures, but had little or no effect on the ice melting peak temperature (T m). The presence of various sugars could either accelerate or retard starch (amylopectin) recrystallization, depending on the type and concentration of sugar, as well as on starch/water ratio. A hypothesis based on the dual antiplasticizing-plasticizing effects of sugars was postulated to explain the observed effects. Of the sugars studied, xylose and fructose appeared to display exceptional retardative and accelerative effects, respectively, on retrogradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Miles, V. J. Morris, P. D. Orford and S. G. Ring, Carbohydr. Res., 135 (1985) 271.

    Google Scholar 

  2. P. L. Russell, J. Cereal Sci., 6 (1987) 147.

    Google Scholar 

  3. S. G. Ring, Starch/Stärke, 37 (1985) 80.

    Google Scholar 

  4. S. G. Ring, P. Colonna, K. J. I'Anson, M. T. Kalichevsky, M. J. Miles, V. J. Morris, and P. D. Orford, Carbohydr. Res., 162 (1987) 277.

    Google Scholar 

  5. L. Slade and H. Levine, in Industrial Polysaccharides — The Impact of Biotechnology and Advanced Methodologies, Gordon and Breach Science, New York 1987, pp. 387–430.

    Google Scholar 

  6. K. J. I'Anson, M. J. Miles, V. J. Morris, L. S. Besford, D. A. Jarvis and R. A. Marsh, J. Cereal Sci., 11 (1990) 243.

    Google Scholar 

  7. P. Cairns, K. J. I'Anson and V. J. Morris, Food Hydrocolloids, 5 (1991) 151.

    Google Scholar 

  8. K. Kohyama and K. Nishinari, J. Agric. Food Chem., 39 (1991) 1406.

    Google Scholar 

  9. K. Katsuta, A. Nishimura and M. Miura, Food Hydrocolloids, 6 (1992) 387.

    Google Scholar 

  10. J. L. Maxwell and H. F. Zobel, Cereal Foods World, 23 (1978) 124.

    Google Scholar 

  11. R. Germani, C. F. Ciacco and D. B. Rodriguez-Amaya, Starch/Stärke, 35 (1983) 377.

    Google Scholar 

  12. S.-M. Chang and L.-C. Liu, J. Food Sci., 56 (1991) 564.

    Google Scholar 

  13. Y.-J. Wang and J. Jane, Cereal Chem., 71 (1994) 527.

    Google Scholar 

  14. M. L. Williams, R. F. Landel and J. D. Ferry, J. Am. Chem. Soc., 77 (1955) 3701.

    Google Scholar 

  15. P. C. Williams, F. D. Kuzima and I. Hlynka, Cereal Chem., 47 (1971) 411.

    Google Scholar 

  16. C. C. Seow and C. H. Teo, Starch/Stärke, 45 (1993) 345.

    Google Scholar 

  17. L. Slade and H. Levine, CRC Crit. Rev. Food Sci. Nutr., 30 (1991) 115.

    Google Scholar 

  18. R.-M. Huang, W.-H. Chang, Y.-H. Chang, and C.-Y. Lii, Cereal Chem., 71 (1994) 202.

    Google Scholar 

  19. L. Slade and H. Levine, in Advances in Food and Nutrition Research, Vol. 38, Academic Press, San Diego, 103–269, 1995.

    Google Scholar 

  20. J. R. Fried, S.-Y. Lai, L. W. Kleiner and M. E. Wheeler, J. Appl. Polym. Sci., 27 (1982) 2869.

    Google Scholar 

  21. G. Ceccorulli, M. Pizzoli and M. Scandola, Polymer, 28 (1987) 2077.

    Google Scholar 

  22. M. Scandola, G. Ceccorulli and M. Pizzoli, Polymer, 28 (1987) 2081.

    Google Scholar 

  23. M. Aubin and R.E. Prud'homme, Polym. Eng. Sci., 28 (1988) 1355.

    Google Scholar 

  24. B. Wunderlich, Thermal Analysis, Academic Press, Boston 1990.

    Google Scholar 

  25. H. Levine and L. Slade, in Physical Chemistry of Foods, Marcel Dekker, New York 1992, pp. 83–221.

    Google Scholar 

  26. A.-C. Eliasson, in New Approaches to Research on Cereal Carbohydrates, Elsevier, Amsterdam 1985, pp. 93–98.

    Google Scholar 

  27. J. Longton and G. A. LeGrys, Starch/Stärke, 33 (1981) 410.

    Google Scholar 

  28. K. J. Zeleznak and R. C. Hoseney, Cereal Chem., 63 (1986) 407.

    Google Scholar 

  29. M. Gudmundsson, A.-C. Eliasson, S. Bengtsson and P. Aman, Starch/Stärke, 43 (1991) 5.

    Google Scholar 

  30. J. K. Sears and J. R. Darby, The Technology of Plasticizers, John Wiley & Sons, New York 1982.

    Google Scholar 

  31. J. M. Johnson, E. A. Davis and J. Gordon, Cereal Chem., 67 (1990) 286.

    Google Scholar 

  32. L. M. Hansen, C. S. Setser and J. V. Paukstelis, Cereal Chem., 66 (1989) 411.

    Google Scholar 

  33. H. Lim, C. S. Setser, J. V. Paustelis and D. Sobczynska, Cereal Chem., 69 (1992) 382.

    Google Scholar 

  34. C. G. Biliaderis and J. Zawistowski, Cereal Chem., 67 (1990) 240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was funded by a Sixth Malaysia Plan R&D grant under the Intensification of Research Priority Areas (IRPA) Program of the Ministry of Science, Technology and Environment, Malaysia. We thank Dr. Harry Levine and Dr. Louise Slade for giving us the opportunity to contribute a paper to this special issue of JTA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seow, C.C., Teo, C.H. & Nair, C.K.V. A DSC study of the effects of sugars on thermal properties of rice starch gels before and after aging. Journal of Thermal Analysis 47, 1201–1212 (1996). https://doi.org/10.1007/BF01992823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01992823

Keywords

Navigation