Skip to main content
Log in

Interferons and indoleamine 2,3-dioxygenase: Role in antimicrobial and antitumor effects

  • Multi-author Review
  • Recent Developments in Interferon Research
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Indoleamine 2,3-dioxygenase (IDO) is an interferon (IFN)-induced protein that initiates the metabolism of tryptophan along the kynurenine pathway. Although IDO can be induced by IFN-γ in many cell types, only mononuclear phagocytes have been shown to be induced to decyclize tryptophan by all three IFN classes. Since tryptophan is an essential amino acid necessary for a variety of metabolic processes, depletion of available tryptophan may be an important mechanism for control of rapidly-dividing microbial pathogens and tumors. The purpose of this review is to present evidence that documents the effects of IFN-induced IDO on prokaryotic and eukaryotic pathogens, as well as on a variety of tumor cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams, R., and Goldinger, J. M., Formation of nucleic acid purines from hypoxanthine and formate in bone marrow slices. Archs Biochem. Biophys.35 (1952) 243–248.

    Article  CAS  Google Scholar 

  2. Ballard, F. J., Regulation of intracellular protein breakdown with specific reference to cultured cells, in: Lysosomes: Their Role in Protein Breakdown, pp. 285–318. Academic Press, London 1987.

    Google Scholar 

  3. Boyse, C., Old, L. J., and Stockert, E., Inhibitory effect of guinea pig serum on a number of new leukemias in mice. Nature198 (1963) 800–801.

    Article  CAS  PubMed  Google Scholar 

  4. Brown, R. R., Tryptophan metabolism in humans: perspective and predictions, in: Biochemical and Medical Aspects of Tryptophan Metabolism, pp. 227–235. Eds O. Hayaishi, Y. Ishimura and R. Kido. Elsevier/North-Holland Biomedical Press, Amsterdam 1980.

    Google Scholar 

  5. Brown, R. R., Borden, E. C., Sondel, P. M., and Lee, C. M., Effects of interferons and interleukin-2 on tryptophan metabolism in humans, in: Progress in Tryptophan and Serotonin Research, pp. 19–26. Eds D. A. Bender, M. H. Joseph, W. Kochen and H. Steinhart, W. DeGruyter Publ. Co., Berlin 1987.

    Google Scholar 

  6. Broome, J. D., Evidence that the L-asparaginase activity of guinea pig serum is responsible for its antilymphoma effects. Nature191 (1961) 1114–115.

    Article  CAS  Google Scholar 

  7. Brunner, M., Regulation of DNA synthesis by amino acid limitation, Cancer Res.33 (1973) 29–32.

    CAS  PubMed  Google Scholar 

  8. Byrne, G. I., and Faubion, C. L., Lymphokine-mediated microbistatic mechanisms restrictChlamydia psittaci growth in macrophages. J. Immun.128 (1982) 469–474.

    Article  CAS  PubMed  Google Scholar 

  9. Byrne, G. I., Lehmann, L. K., Kirshbaum, J. G., Borden, E. C., Lee, C. M., and Brown, R. R., Induction of tryptophan degradation in vitro: A γ-interferon-stimulated activity. J. Interferon Res.6 (1986) 389–396.

    Article  CAS  PubMed  Google Scholar 

  10. Byrne, G. I., Lehmann, L. K., and Landry, G. J., Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellularChlamydia psittaci replication in T24 cells. Infect. Immun.53 (1986) 344–351.

    Article  Google Scholar 

  11. Carlin, J. M., Borden, E. C., and Byrne, G. I., Enhancement of indoleamine 2,3-dioxygenase activity in cancer patients receiving interferon-βser. J. Interferon Res.9 (1989) 163–169.

    Article  Google Scholar 

  12. Carlin, J. M., Borden, E. C., Sondel, P. M., and Byrne, G. I., Biologic response modifierinduced indoleamine 2,3-dioxygenase activity in human peripheral blood mononuclear cells cultures. J. Immun.139 (1987) 2414–2418.

    Article  CAS  PubMed  Google Scholar 

  13. Carlin, J. M., Borden, E. C., Sondel, P. M., and Byrne, G. I., Interferon-induced indoleamine 2,3-dioxygenase activity in human mononuclear phagocytes. J. Leuk. Biol.45 (1989) 29–34.

    Article  CAS  Google Scholar 

  14. Cooney, D. A., and Handschumacher, R. E., L-asparaginase and L-asparagine metabolism. A. Rev. Pharmac.10 (1970) 421–440.

    Article  CAS  Google Scholar 

  15. Cooper, J. R., Bloom, F. E., and Roth, R. H., The biochemical basis of neuropharmacology, 4rth edn. Oxford University press 1982.

  16. de la Maza, L. M., and Peterson, E. M., Dependence of the in vitro antiproliferative activity of recombinant human gamma-interferon on the concentration of tryptophan in culture media. Cancer Res.48 (1988) 346–350.

    PubMed  Google Scholar 

  17. de la Maza, L. M., Peterson, E. M., Fennie, C. W., and Czarniecki, C. W., The antichlamydial and anti-proliferative activities of recombinant murine interferon-γ are not dependent on tryptophan concentrations. J. Immun.135 (1985) 4198–4200.

    Article  PubMed  Google Scholar 

  18. Farrar, W. L., Birchenall-Sparks, M. C., and Young, H. B., Interleukin-2 induction of interferon-γ mRNA synthesis. J. Immun.137 (1986) 3836–3840.

    Article  CAS  PubMed  Google Scholar 

  19. Feigelson, P., and Greengard, O., The purification and properties of liver tryptophan pyrrolase. J. biol. Chem.236 (1961) 153–157.

    Article  CAS  PubMed  Google Scholar 

  20. Hayaishi, O., Hirata, F., Onishi, T., Henry, J., Rosenthal, I., and Katoh, A., Indoleamine 2,3-dioxygenase: incorporation of18O2-and18O2 into the reaction products. J. biol. Chem.252 (1977) 3548–3550.

    Article  CAS  PubMed  Google Scholar 

  21. Hayaishi, O., Hirata, F., Onishi, T., Yoshida, R., and Shimizu, T., New assay procedure for indoleamine 2,3-dioxygenase, in: Iron and Copper Proteins, pp. 335–342. Eds, K. T. Yasunobu, H. F., Mower and O. Hayaishi. Plenum Publishing Co., New York 1976.

    Chapter  Google Scholar 

  22. Issacs, A., and Lindenmann, J., Virus interference. 1. The interferon. Proc. R. Soc. London B.147 (1957) 258–267.

    Article  Google Scholar 

  23. Kato, S., Sueoka, T., and Yamada, S., Direct inhibition of brain sepiapterin reductase by a catecholamine and an indoleamine. Biochem. biophys. Res. Commun.105 (1982) 75–81.

    Article  Google Scholar 

  24. Knox, W. E., and Mehler, A. H., The conversion of tryptophan to kynurenine in liver: I. The coupled tryptophan peroxidase-oxidase system forming formylkynurenine. J. biol. Chem.187 (1950) 419–430.

    Article  CAS  PubMed  Google Scholar 

  25. Kull, F. C. Jr, Brent, D. A., Perkh, I., and Cuatrecasas, P., Chemical identification of a tumor-derived angiogenic factor. Science236 (1987) 843–845.

    Article  CAS  PubMed  Google Scholar 

  26. Ley, K. D., and Tobey, R. A., Regulation of initiation of DNA synthesis in chinese hamster cells. II. Induction of DNA synthesis and cell division by isoleucine and glutamine in G1-arrested cells in suspension culture. J. Cell Biol.47 (1970) 453–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Munro, H. N., Role of amino acid supply in regulation of ribosome function. Fedn. Proc. Am. Soc. exp. Biol.27 (1968) 1231–1237.

    CAS  Google Scholar 

  28. Munro, H. N., Mammalian protein metabolism vol. 4. Ed. H. N. Munro. Academic Press, New York 1968.

    Google Scholar 

  29. Murray, H. W., and Cohn, Z. A., Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation. J. exp. Med.152 (1980) 1596–1609.

    Article  CAS  PubMed  Google Scholar 

  30. Nacy, C. A., James, S. L., Benjamin, W. R., Farrar, J. J., Hockmeyer, W. T., and Meltzer, M. S., Activation of macrophages for microbicidal and tumoricidal functions by soluble factors from EL-4, a continuous T-cell line. Infect. Immun.40 (1983) 820–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nathan, C. F., Murray, H. W., Wiebe, M. E., and Rubin, B. Y., Identification of interferon-γ as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. exp. Med.158 (1983) 670–689.

    Article  CAS  PubMed  Google Scholar 

  32. Nishizuka, Y., and Hayaishi, O., Enzymic synthesis of niacin nucleotides from 3-hydroxyanthranilic acid in mammalian liver. J. biol. Chem.238 (1963) PC483-PC485.

    Article  CAS  Google Scholar 

  33. Oettgen, H. F., Old, L. J., Boyse, E. A., Campbell, H. A., Philips, F. S., Clarkson, B. D., Tallal, L., Leeper, R. D., Schwartz, M. K., and Kim, H., Inhibition of leukemias in man by L-asparaginase. Cancer Res.27 (1967) 2619–2631.

    CAS  PubMed  Google Scholar 

  34. Ozaki, Y., Edelstein, M. P., and Duch, D. S., The actions of interferon and antiinflammatory agents on induction of indoleamine 2,3-dioxygenase in human peripheral blood monocytes. Biochem. biophs. Res. Commun.144 (1987) 1147–1153.

    Article  CAS  Google Scholar 

  35. Ozaki, Y., Edelstein, M. P., and Duch, D. S., Induction of indoleamine 2,3-dioxygenase: A mechanism of the antitumor activity of interferon-gamma. Proc. natl Acad. Sci. USA85 (1988) 1242–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ozaki, Y., Nichol, C. A., and Duch, D. S., Utilization of dihydroflavin mononucleotide and superoxide anion for the decyclization of L-tryptophan by murine epididymal indoleamine 2,3-dioxygenase. Archs Biochem. Biophys.257 (1987) 207–216.

    Article  CAS  Google Scholar 

  37. Ozaki, Y., Reinhard, J. F., Jr., and Nichol, C. A., Cofactor activity of dihydroflavin mononucleotide and tetrahydrobiopterin for murine epididymal indoleamine 2,3-dioxygenase. Biochem. biophys. Res. Commun.137 (1986) 1106–1111.

    Article  CAS  PubMed  Google Scholar 

  38. Pearlstein, K. T., Palladino, M. A., Welte, K., and Vilcek, J. Purified human interleukin-2 enhances induction of immune interferon. Cell. Immun.80 (1983) 1–9.

    Article  CAS  Google Scholar 

  39. Pfefferkorn, E. R., Interferon-γ blocks the growth ofToxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc. natl Acad. Sci. USA81 (1984) 908–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pfefferkorn, E. R., Eckel, M., and Rebhun, S., Interferon-γ suppresses the growth ofToxoplasma gondii in human fibroblasts through starvation for tryptophan. Molec. Biochem. Parasit.20 (1986) 215–224.

    Article  CAS  Google Scholar 

  41. Pfefferkorn, E. R., and Guyre, P. M., Inhibition of growth ofToxoplasma gondii in cultured fibroblasts by human recombinant gamma interferon. Infect. Immun.44 (1984) 211–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pfefferkorn, E. R., Rebhun, S., and Eckel, M., Characterization of an indoleamine 2,3-dioxygenase induced by gamma-interferon in cultured human fibroblasts. J. Interferon Res.6 (1986) 267–279.

    Article  CAS  PubMed  Google Scholar 

  43. Price, J. M., Brown, R. R., and Yess, N., Testing the functional capacity of the tryptophanniacin pathway in man by analysis of urinary metabolites. Adv. Metab. Disorders2 (1965) 159–225.

    Article  CAS  Google Scholar 

  44. Roberts, J., Schmid, F. A., and Rosenfeld, H. J., Biologic and antineoplastic effects of enzyme-mediated in vivo depletion of L-glutamine, L-tryptophan, and L-histidine. Cancer Treatm. Rep.63 (1979) 1045–1054.

    CAS  Google Scholar 

  45. Rothermel, C. D., Rubin, B. Y., and Murray, H. W., γ interferon is the factor in lymphokine that activates human macrophages to inhibitChalamydia psittaci replication. J. Immun.131 (1983) 2542–2544.

    Article  CAS  PubMed  Google Scholar 

  46. Rubin, B. Y., Anderson, S. L., Hellermann, G. R., Richardson, N. K., Lunn, R. M., and Valinsky, J. E., The development of antibody to the interferon-induced indoleamine 2,3-dioxygenase and the study of the regulation of its synthesis. J. Interferon Res.8 (1988) 691–702.

    Article  CAS  PubMed  Google Scholar 

  47. Schofield, L., Ferreira, A., Altszuler, R., Nussenzweig, V., and Nussenzweig, R. S., Interferon-γ inhibits the intrahepatocytic development of malaria parasites in vitro. J. Immun.139 (1987) 2020–2025.

    Article  CAS  PubMed  Google Scholar 

  48. Shemer, Y., Kol, R., and Sarov, I., Tryptophan reversal of recombinant human gamma interferon inhibition ofC. trachomatis growth. Curr. Microbiol.16 (1987) 9–13.

    Article  CAS  Google Scholar 

  49. Shimizu, T., Nomiyama, S., Hirata, F., and Hayaishi, O., Indoleamine 2,3-dioxygenase. Purification and some properties. J. biol. Chem.253 (1978) 4700–4706.

    Article  CAS  PubMed  Google Scholar 

  50. Sono, M., Taniguchi, T., Watanabe, Y., and Hayaishi, O., Indoleamine 2,3-dioxygenase. Equilibrium studies of the tryptophan binding to the ferric, ferrous, and co-bound enzymes. J. biol. Chem.255 (1980) 1339–1345.

    Article  CAS  PubMed  Google Scholar 

  51. Takikawa, O., Kuroiwa, T., Yamazaki, F., and Kido, R., Mechanism of interferon-gamma action: Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J. biol. Chem.263 (1988) 2041–2048.

    Article  CAS  PubMed  Google Scholar 

  52. Takikawa, O., Yoshida, R., Kido, R., and Hayaishi, O., Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J. biol. Chem.261 (1986) 3648–3653.

    Article  CAS  PubMed  Google Scholar 

  53. Taniguchi, T., Hirata, F., and Hayaishi, O., Intracellular utilization of superoxide anion by indoleamine 2,3-dioxygenase of rabbit enterocytes. J. biol. Chem.252 (1977) 2774–2776.

    Article  CAS  PubMed  Google Scholar 

  54. Tobey, R. A., and Ley, K. D., Isoleucine-mediated regulation of genome replication in various mammalian cell lines. Cancer Res.31 (1971) 46–51.

    CAS  PubMed  Google Scholar 

  55. Totter, J. R., Incorporation of isotopic formate into the thymine of bone marrow deoxyribonucleic acid in vitro. J. Am. chem. Soc.76 (1954) 2196–2197.

    Article  CAS  Google Scholar 

  56. Totter, J. R., and Best, A. N., The metabolism of formate-14C by rabbit bone marrow in vivo. Archs Biochem. Biophys.54 (1955) 318–329.

    Article  CAS  Google Scholar 

  57. Turco, J., and Winkler, H. H., Gamma-interferon-induced inhibition of the growth ofRickettsia prowazekii in fibroblasts cannot be explained by the degradation of tryptophan or other amino acids. Infect. Immun.53 (1986) 38–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weil, J., Epstein, C. J., Epstein, L. B., Sedmak, J. J., Sabran, J. L., and Grossberg, S. E., A unique set of polypeptides is induced by γ interferon in addition to those induced in common with α and β interferon. Nature301 (1983) 437–439.

    Article  CAS  PubMed  Google Scholar 

  59. Werner, E. R., Bitterlich, G., Fuchs, D., Hausen, A., Reibnegger, G., Szabo, G., Dierich, M. P., and Wachter, H., Human macrophages degrade tryptophan upon induction by interferon-gamma. Life Sci.41 (1987) 273–280.

    Article  CAS  PubMed  Google Scholar 

  60. Werner, E. R., Hirsch-Kauffmann M., Fuchs, D., Hausen, A., Reibnegger, G., Schweiger, M., and Wachter, H., Interferon-gamma-induced degradation of tryptophan by human cells in vitro. Biol. Chem. Hoppe-Seyler368 (1987) 1407–1412.

    Article  CAS  PubMed  Google Scholar 

  61. Wooley, P. V., Dion, R. L., and Bono, V. H. Jr., Effects of tryptophan deprivation on L1210 cells in culture. Cancer Res.34 (1974) 1010–1014.

    Google Scholar 

  62. Wurtman, R. J., Axelrod, J., and Kelly, D. E., The pineal. Academic Press, New York 1968.

    Google Scholar 

  63. Yamazaki, F., Kuroiwa, T., Takikawa, O., and Kido, R., Human indolylamine 2,3-dioxygenase: Its tissue distribution, and characterization of the placental enzyme. Biochem. J.230 (1985) 635–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yasui, H., Takai, K., Yoshida, R., and Hayaishi, O., Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase; its possible occurrence in cancer patients. Proc. natl Acad. Sci. USA83 (1986) 6622–6626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoshida, R., and Hayaishi, O., Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proc. natl Acad. Sci. USA75 (1978) 3998–4000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoshida, R., Imanishi, J., Oku, T., Kishida, T., and Hayaishi O., Induction of pulmonary indoleamine 2,3-dioxygenase by interferon. Proc. natl Acad. Sci. USA78 (1981) 129–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yoshida, R., Nukiwa, T., Watanabe, Y., Fujiwara, M., and Hayaishi, O., Regulation of indoleamine 2,3-dioxygenase activity in the small intestine and the epididymis of mice. Archs Biochem. Biophys.203 (1980) 343–351.

    Article  CAS  Google Scholar 

  68. Yoshida, R., Takikawa, O., Yasui, H., Hayaishi O., and Yasuhira, K., Role of indoleamine 2,3-dioxygenase in the defense mechanism against tumor growth, in: Progress in Tryptophan and Serotonin Research, pp. 513–516. Walter de Gruyter and Co., Berlin 1984.

    Google Scholar 

  69. Yoshida, R., Urade, Y., Nakata, K., Watanabe, Y., and Hayaishi, O., Specific induction of indoleamine 2,3-dioxygenase by bacterial lipopolysaccharide in the mouse lung. Archs Biochem. Biophys.212 (1981) 629–637.

    Article  CAS  Google Scholar 

  70. Yoshida, R., Urade, Y., Sayama, S., Takikawa, O., Ozaki, Y., and Hayaishi, O., Indoleamine 2,3-dioxygenase: A new mediator of interferon actions, in: Oxygenase and Oxygen Metabolism, pp. 569–580. Eds M. L. Coon, L. Ernster, and R. W. Estabrook. Academic Press, New York 1982.

    Google Scholar 

  71. Yoshida, R., Urade, Y., Tokuda, M., and Hayaishi, O., Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection. Proc. natl Acad. Sci. USA76 (1979) 4084–4086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlin, J.M., Ozaki, Y., Byrne, G.I. et al. Interferons and indoleamine 2,3-dioxygenase: Role in antimicrobial and antitumor effects. Experientia 45, 535–541 (1989). https://doi.org/10.1007/BF01990503

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01990503

Key words

Navigation