Skip to main content

Advertisement

Log in

The role of repair in radiobiology

  • Multi-author Review
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Apart from cancer and mutation induction, radiobiological effects on mammals are mostly attributable to cell ‘death’, defined as loss of proliferative capacity. Survival curves relate retention of that capacity to radiation dose, and often manifest a quasi-threshold (‘shoulder’). The shoulder is attributable to an initial mechanism of repair (‘Q-repair’) which is gradually depleted as dose increases. Another form of repair, which is not depleted (‘P-repair’), increases the dose required to deliver an average of one lethal event per cell (dose ‘D0’). Neither form of repair can unambiguously be linked with repair of defects in isolated DNA. An important initial lesion may well be disruption of the complex structural relationship between the DNA, nuclear membrane and associated proteins. One form of P-repair may be restoration of that structural relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alper, T., Elkind recovery and ‘sub-lethal damage’: A misleading association? Br. J. Radiol.50 (1977) 459–467.

    Article  CAS  PubMed  Google Scholar 

  2. Alper, T., Cellular Radiobiology. Cambridge University Press 1979.

  3. Alper, T., Survival curve models, in: Radiation Biology in Cancer Research, pp. 3–18, Eds R. E. Meyn and H. R. Withers. Raven Press, New York 1980.

    Google Scholar 

  4. Alper, T., and Moore, J. L., The interdependence of oxygen enhancement ratios for 250 kVp X-rays and fast neutrons. Br. J. Radiol.40 (1967) 843–848.

    Article  CAS  PubMed  Google Scholar 

  5. Atwood, K. C., and Norman, A., On the interpretation of multi-hit survival curves. Proc. natl Acad. Sci.35 (1949) 696–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bedford, J. S., and Hall, E. J., On the shape of the dose-response curve for HeLa cells cultured in vitro and exposed to γ-radiation. Nature209 (1966) 1363–1364.

    Article  CAS  PubMed  Google Scholar 

  7. Cox, R., A cellular description of the repair defect in Ataxia telangiectasis, in: Ataxia telangiectasia — a Cellular and Molecular Link between Cancer, Neuropathology and Immune Deficiency, pp. 141 ff. Eds B. A. Bridges and D. G. Harnden. John Wiley, New York 1982.

    Google Scholar 

  8. Cramp, W. A., Edwards, J. C., George, A. M., and Sabovljev, S. A., Subcellular lesions: the current position. Br. J. Cancer, Suppl. VI (1984) 7–11.

    Google Scholar 

  9. Cramp, W. A., George, A. M., Lunec, J., Harris, G., Olsen, I., Lewis, P. D., Chamberlain, S., Ahnstrom, G., and Erixon, K., A transient post-irradiation defect in newly synthesized DNA. Int. J. Radiat. Biol.40 (1981) 573–579.

    CAS  Google Scholar 

  10. Cramp, W. A., Lunec, J., George, A., Cresswell, S., Lewis, P. D., Chamberlain, S., Harris, G., and Olsen, I., The extent of bonding of newly synthesized DNA to parent template in unirradiated cells as a prediction of radiation sensitivity. Int. J. Radiat. Biol.41 (1982) 193–196.

    CAS  Google Scholar 

  11. Dettor, C. M., Dewey, W. C., Winans, L. F., and Noel, J. S., Enhancement of X-ray damage in synchronous Chinese hamster cells by hypertonic treatments. Radiat. Res.52 (1972) 352–372.

    Article  CAS  PubMed  Google Scholar 

  12. Durand, R. E., and Sutherland, R. M., Effects of intercellular contact on repair of radiation damage. Exp. Cell Res.71 (1972) 75–80.

    Article  CAS  PubMed  Google Scholar 

  13. Elkind, M. M., and Sutton, H., Radiation response of mammalian cells grown in culture. I. Repair of X-ray damage in surviving Chinese hamster cells. Radiat. Res.13 (1960) 556–593.

    Article  CAS  PubMed  Google Scholar 

  14. Fritz-Niggli, H., Büchi, C., and Schweizer, P., Oxygen-effect as an inhibition of repair: radiation studies on excision repair deficient ϱL1-embryos ofDrosophila. Radiat. envir. Biophys.19 (1981) 265–274.

    Article  CAS  Google Scholar 

  15. George, A. M., and Cramp, W. A., The effects of ionizing radiation in structure and function of DNA. Progress in Biophysics and Molecular Biology (1988) in press.

  16. Goodhead, D. T., Models of radiation inactivation and mutagenesis in: Radiation Biology in Cancer Research, pp. 231–247. Eds R. E. Meyn and H. R. Withers. Raven Press, New York 1980.

    Google Scholar 

  17. Gould, M. N., Cathers, L. E., Clifton, K. H., Howard, S., Jirtle, R. L., Mahler, R. T., and Thomas, F., The influence ofin situ repair systems on survival of several irradiated parenchymal cell types. Br. J. Cancer49, Suppl. VI (1984) 191–195.

    Google Scholar 

  18. Hagen, U., Biochemical aspects of radiation biology. Experientia45 (1989) 7–12.

    Article  CAS  PubMed  Google Scholar 

  19. Hahn, G. M., and Little, J. B., Plateau-phase cultures of mammalian cells: an in vitro model for human cancer. Curr. Top. Radiat. Res. Quart.8 (1972) 39–83.

    CAS  Google Scholar 

  20. Hall, E. J., Biological problems in the measurement of survival at low doses, in: Cell Survival after Low Doses of Radiation, pp. 13–24. Ed. T. Alper. Inst. of Physics and John Wiley & Sons, 1975.

  21. Hesslewood, I. P., DNA strand breaks in resistant and sensitive mutant lymphoma cells detected by the hydroxylapatite chromatographic technique. Int. J. Radiat. Biol.34 (1978) 461–469.

    CAS  Google Scholar 

  22. Iliakis, G., and Nüsse, M.: Evidence that repair and expression of potentially lethal damage cause the variations in cell survival after X-irradiation observed through the cell cycle in Ehrlich ascites tumour cells. Radiat Res.95 (1983) 87–107.

    Article  CAS  PubMed  Google Scholar 

  23. Jacobson, B., Evidence for recovery from X-ray damage inChlamydomonas. Radiat. Res.1 (1957) 394–406.

    Article  Google Scholar 

  24. Katz, R., Track theory and radiation quality, in: Biological aspects of radiation quality (Proc. of a Symposium, Lucas Heights 8–12 March 1971). IAEA STI/PUB/286 pp. 11–23 (1971).

  25. Kellerer, A. M., and Rossi, H. H.: The theory of dual radiation action. Curr. Top. Radiat. Res. Quart.8 (1972) 85–158.

    CAS  Google Scholar 

  26. Kemp, L. M., Sedgwick, S. G., and Jeggo, P. A., X-ray sensitive mutants of Chinese hamster ovary cells defective in double-strand break rejoining. Mutat. Res.132 (1984) 189–196.

    CAS  PubMed  Google Scholar 

  27. Michalowski, A., Effects of radiation on normal tissues: hypothetical mechanisms and limitations of in situ assays of clonogenicity. Radiat. Envir. Biophys.19 (1981) 157–172.

    Article  CAS  Google Scholar 

  28. Painter, R. B., Inhibition of mammalian cell DNA synthesis by ionizing radiation. Int. J. Radiat. Biol.49 (1986) 771–781.

    CAS  Google Scholar 

  29. Petin, V. G., and Kabakova, N. M., RBE of densely ionizing radiation for wild-type and radiosensitive mutants of yeast. Mutatation Res.82 (1981) 285–294.

    Article  CAS  Google Scholar 

  30. Powers, E. L., Considerations of survival curves and target theory. Phys. med. Biol.7 (1962) 3–28.

    Article  CAS  PubMed  Google Scholar 

  31. Prise, K. M., Davies, S., and Michael, B. D., The relationship between radiation-induced DNA double-strand breaks and cell kill in hamster V-79 fibroblasts irradiated with 250 kVp X-rays, 2.3 MeV neutrons or238Pu α-particles. Int. J. Radiat. Biol. (1988) in press.

  32. Orr, J. S., Laurie, J., Kirk, J., and Malone, J. F., The ‘pool’ and the initial slope of survival curves for high- and low-LET radiation, in: Cell Survival after Low Doses of Radiation, pp. 86–88. Ed. T. Alper. Inst. of Physics and John Wiley & Sons, 1975.

  33. Quastler, H., Studies on Roentgen death in mice. Am. J. Roentgenol.54 (1945) 449–456.

    Google Scholar 

  34. Radford, I. R., The level of induced DNA double-strand breakage correlates with cell killing after X-irradiation. Int. J. Radiat. Biol.48 (1985) 45–54.

    CAS  Google Scholar 

  35. Radford, I. R., Evidence for a general relationship between the induced level of DNA double-strand breakage and cell-killing after X-irradiation of mammalian cells. Int. J. Radiat. Biol.49 (1986) 611–620.

    CAS  Google Scholar 

  36. Radford, I. R., Effect of cell-cycle position and dose on the kinetics of DNA double-strand breakage repair in X-irradiated Chinese hamster cells. Int. J. Radiat. Biol.52 (1987) 555–563.

    CAS  Google Scholar 

  37. Savage, J. R. K., Radiation cytogenetics. Experientia45 (1989) 52–59.

    Article  CAS  PubMed  Google Scholar 

  38. Silini, G., and Maruyama, Y., X-ray and fast neutron survival response of 5-bromo-deoxycytidine-treated bone-marrow cells. Int. J. Radiat. Biol.9 (1965) 605–610.

    CAS  Google Scholar 

  39. Sinclair, W. K., Cell cycle dependence of the lethal radiation response in mammalian cells. Curr. Top. Radiat. Res. Quart.7 (1972) 264–285.

    Google Scholar 

  40. Sinclair, W. K., and Morton, R. A., X-ray sensitivity during the cell generation cycle of cultured Chinese hamster cells. Radiat. Res.29 (1966) 450–474.

    Article  CAS  PubMed  Google Scholar 

  41. Taylor, A. M. R., Harnden, D. G., Arlett, C. F., Harcourt, S. A., Lehmann, A. R., Stevens, S. and Bridges, B. A., Ataxia telangiectasia: a human mutation with abnormal radiosensitivity. Nature258 (1975) 427–429.

    Article  CAS  PubMed  Google Scholar 

  42. Utsumi, H., and Elkind, M. M., Potentially lethal damage versus sublethal damage: independent repair processes in actively growing Chinese hamster cells. Radiat. Res.77 (1979) 346–360.

    Article  CAS  PubMed  Google Scholar 

  43. Utsumi, H., and Elkind, M. M., Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells. Radiat. Res.96 (1983) 348–358.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alper, T., Cramp, W.A. The role of repair in radiobiology. Experientia 45, 21–33 (1989). https://doi.org/10.1007/BF01990449

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01990449

Key words

Navigation