Skip to main content
Log in

Detoxification of pesticides by microbial enzymes

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adamson, J., and Inch, T. D., Possible relationships between structure and mechanism of degradation of organophosphorous insecticides in the soil environment. Proc. 7th Br. Insecticide Fungicide Conf.1 (1973) 15–33.

    Google Scholar 

  2. Audus, L. J., Herbicide behavior in the soil, in: The Physiology and Biochemistry of Herbicides. Ed. L. J. Audus. Academic Press, New York 1964.

    Google Scholar 

  3. Barik, S., and Munnecke, D. M., Enzymatic hydrolysis of concentration diazinon in soil. Bull. environ. Contam. Toxic.29 (1982) 235–239.

    Article  CAS  Google Scholar 

  4. Barik, S., Munnecke, D. M., and Fletcher, J. S., Enzymatic hydrolysis of malathion and other dithioate pesticides. Biotechnol. Lett.4 (1982) 795–798.

    Article  CAS  Google Scholar 

  5. Barik, S. and Sethunathan, N., Biological hydrolysis of parathion in natural ecosystems. J. environ. Qual.7 (1978) 346–348.

    Article  CAS  Google Scholar 

  6. Barik, S. and Sethunathan, N., Metabolism of nitrophenols in flooded soils. J. environ. Qual.7 (1978) 349–352.

    Article  CAS  Google Scholar 

  7. Barik, S., Siddaramappa, R., and Sethunathan, N., Metabolism of nitrophenols by bacteria isolated from parathionamended soil. J. Microbiol. Serol.42 (1976) 461–470.

    Google Scholar 

  8. Bartha, R., and Pramer, D., The metabolism of acylanilide herbicides. Adv. appl. Microbiol.13 (1970) 317–341.

    Article  CAS  Google Scholar 

  9. Bollag, J.-M., Briggs, G. G., Dawson, J. E., and Alexander, M., 2,4-D metabolism: Enzymatic degradation of chlorocatechols. J. agric. Fd Chem.16 (1968) 829–833.

    Article  CAS  Google Scholar 

  10. Bollag, J.-M., Helling, C. S., and Alexander, M., 2,4-D metabolism: Enzymatic hydroxylation of chlorinated phenols. J. agric. Fd Chem.16 (1968) 826–828.

    Article  Google Scholar 

  11. Bollag, J.-M., Helling, C. S., and Alexander, M., Metabolism of 4-chloro-2-methyl-phenoxyacetic acid by soil bacteria. Appl. Microbiol.15 (1967) 1393–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blake, J., and Kaufman, D. D., Characterization of acyanilidehydrolyzing enzyme(s) fromFusarium oxysporum Schlecht. Pest. Biochem. Physiol.5 (1975) 305–313.

    Article  CAS  Google Scholar 

  13. Brown, K. A., Phosphotriesterases ofFlavobacterium sp. Soil Biol. Biochem.12 (1980) 105–112.

    Article  CAS  Google Scholar 

  14. Christensen, H. E., Registry of toxic effects of chemical substances. Ed. U.S. Department Health, Education and Welfare, National Institute for Occupational Safety and Health, 1245 pp. Rockville, Maryland 1976.

    Google Scholar 

  15. Domsch, K. H., Fischer, H. F., and Munnecke, D. M., Mikrobielle bzw. enzymatische Spaltung von Parathion, in: Final report of the Bundesministerium für Forschung und Technologie, p. 54 BMFT, Bonn 1979.

    Google Scholar 

  16. Engelhardt, G., Wallnöfer, P. R., and Plapp, R., Degradation of linuron and some other herbicides and fungicides by a linuron-inducible enzyme obtained fromBacillus sphaericus. Appl. Microbiol.22 (1971) 284–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Engelhardt, G., Wallnöfer, P. R., and Plapp, R., Identification of N,O-dimethylhydroxylamine as a microbial degradation production of the herbicide, linuron. Appl. Microbiol.23 (1972) 664–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Engelhardt, G., Wallnöfer, P. R., and Plapp, R., Purification and porperties of any aryl acylamidase ofBacillus sphaericus, catalyzing the hydrolysis of various phenylamide herbicides and fungicides. Appl. Microbiol.26 (1973) 709–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eto, M., Organophosphorous pesticides, in: Organic and Biological Chemistry, pp. 386–399 CRC Press, Boca Raton, Florida 1974.

    Google Scholar 

  20. Geissbühler, H., Haselbach, C., Aebi, H., and Ebner, L., The fate of N-(4-chlorophenoxy)-phenyl-N,N-dimethylurea (C-1983) in soils and plants. III. Breakdown in soils and plants. Weed Res.3 (1963) 277–297.

    Article  Google Scholar 

  21. Geissbühler, H., Martin, H., and Voss, G., The substituted ureas, in: Herbicides-Chemistry, Degradation and Mode of Action, vol. 1, 2nd edn, p. 209 Eds P. C. Kearney and D. D. Kaufman. Marcel Dekker, New York 1973.

    Google Scholar 

  22. Getzin, L. W., and Rosefield, I., Organophosphorous insecticides degradation by heat-labile substances in soil. J. agric. Fd Chem.16 (1968) 598–601.

    Article  CAS  Google Scholar 

  23. Getzin, L. W., and Rosefield, I., Partial purification and properties of a soil enzyme that degrades the insecticide malathion. Biochim. biophys. Acta235 (1971) 442–453.

    Article  CAS  PubMed  Google Scholar 

  24. Goldman, P., Milne, G. W. A., and Keister, D. B., Carbonhalogen bond cleavage. III. Studies on bacterial halidohydrolases. J. biol. Chem.243 (1968) 428–434.

    Article  CAS  PubMed  Google Scholar 

  25. Gundersen, K., and Jensen, H. L., A soil bacterium decomposing organic nitro-compounds. Acta agric. scand.6 (1956) 100–114.

    Article  CAS  Google Scholar 

  26. Hemmett, R. B., Jr, and Faust, S. D., Biodegradation kinetics of 2,4-dichlorophenoxyacetic acid by aquatic microorganisms. Residue Rev.29 (1969) 191–207.

    Article  PubMed  Google Scholar 

  27. Janke, D., and Fritsche, W., Deohlorierung von 4-chlorophenol nach extradioler Ringspaltung durchPseudomonas putida. Z. allg. Mikrobiol.19 (1979) 139–141.

    CAS  PubMed  Google Scholar 

  28. Jensen, H. L., and Lautrup-Larsen, G., Microorganisms that decompose nitroaromatic compounds, with special reference to dintiroorthocresol. Acta agric. scand.17 (1967) 115–126.

    Article  CAS  Google Scholar 

  29. Kaufman, D. D., Degradation of pesticides by soil microorganisms, in: Pesticides in Soil and Water, pp. 133–156. Ed. W.D. Guenzi. Soil Science Society of America Madison, Wisconsin, 1974.

    Google Scholar 

  30. Kaufman, D. D., and Kearney, P. C., Microbial transformations in the soil, in: Herbicides-Physiology, Biochemistry, Ecology, vol. 2, pp. 29–64. Ed. L. J. Audus. Academic Press, New York 1976.

    Google Scholar 

  31. Kearney, P. C., Purification and properties of an enzyme responsible for hydrolyzing phenylcarbamates. J. agric. Fd Chem.113 (1965) 561–564.

    Article  Google Scholar 

  32. Kearney, P. C., and Kaufman, D. D., Enzyme from soil bacterium hydrolyzes phenylcarbamate herbicides. Science147 (1965) 740–741.

    Article  CAS  PubMed  Google Scholar 

  33. Lanzilotta, R. P., and Pramer, D., Herbicide transformation. I. Studies with whole cells ofFusarium solani. Appl. Microbiol.19 (1970) 301–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lanzilotta, R. P., and Pramer, D., Herbicide transformation. II. Studies with an acylamidase ofFusarium solani. Appl. Microbiol.19 (1970) 307–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laveglia, J., and Dahm, P.A., Degradation of organophosphorous and carbamate insecticides in the soil and by microorganisms. A. Rev. Ent.22 (1977) 483–513.

    Article  CAS  Google Scholar 

  36. Lichtenstein, E. P., Fuhremann, T. W., and Schulz, K. R., Effect of sterilizing agents in persistence of parathion and diazinon in soil and water. J. agric. Fd Chem.16 (1968) 870–873.

    Article  CAS  Google Scholar 

  37. Loos, M. A., Phenoxyalkanoic acids, in: Herbicides-Chemistry, Degradation, and Mode of Action, vol. 1, 2nd ed., pp. 1–128. Eds P. C. Kearney and D. D. Kaufman. Marcel Dekker, New York 1975.

    Google Scholar 

  38. Loos, M. A., Bollag, J.-M., and Alexander, M., Phenoxyacetate herbicide detoxification by bacterial enzymes. J. agric. Fd Chem.15 (1967) 858–860.

    Article  CAS  Google Scholar 

  39. Matsumura, F., and Bousch, G. M., Malathion degradation byTrichoderma viride and aPseudomonas species. Science153 (1966) 1278–1280.

    Article  CAS  PubMed  Google Scholar 

  40. Mostafa, I. Y., Bahig, M. R. E., Fakhr, I. M. I., and Adam, Y., Metabolism of organophosphorous insecticides. XIV. Malathion breakdown by soil fungi. Z. Naturforsch.27B (1972) 1115–1116.

    Article  Google Scholar 

  41. Mostafa, I. Y., Fakhr, I. M. I., Bahig, M. R. E., and El-Zawahry, Y. A., Metabolism of organophosphorous insecticides. XIII. Degradation of malathion byRhizobium sp. Archs Microbiol.86 (1972) 221–224.

    CAS  Google Scholar 

  42. Mounter, L. A., Baxter, R. F., and Chanutin, A., Dialkylfuorophosphatases of microorganisms. J. biol. Chem.215 (1955) 699–711.

    Article  CAS  PubMed  Google Scholar 

  43. Munnecke, D. M., Chemical, physical and biological methods for the disposal and detoxification of pesticides. Residue Rev.70 (1979) 1–26.

    CAS  PubMed  Google Scholar 

  44. Munnecke, D. M., Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl. environ. Microbiol.32 (1976) 7–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Munnecke, D. M., Hydrolysis of organophosphate insecticides by an immobilized-enzyme system. Biotechnol. Bioengng21 (1979) 2247–2261.

    Article  CAS  Google Scholar 

  46. Munnecke, D. M., Enzymatic detoxification of waste organophosphate pesticides. J. agric. Fd Chem.28 (1980) 105–111.

    Article  CAS  Google Scholar 

  47. Munnecke, D. M., Day, H. R., and Trask, H. W., Review of pesticide disposal research, No. SW 527, U.S. Environmental Protection Agency Publication, 76p. Cincinnatti, Ohio, 1976.

  48. Munnecke, D. M., and Hsieh, D. P. H., Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl. Microbiol.28 (1974) 212–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murry, C., Senate panel probes kepone disaster, Chem. Engng News54 (1976) 17.

    Article  Google Scholar 

  50. O'Sullivan, D., Strong growth ahead for industrial enzymes. Chem. Engng News59 (1981) 37.

    Article  Google Scholar 

  51. Ottinger, R. S., and Blumenthal, J. L., Recommended methods of reduction, neutralization, recovery or disposal of hazardous waste. V. Pesticides and cyanides, EPA report NTIS, PB-224-579, p. 144. Environmental Protection Agency, Springfield, Virginia, 1974.

    Google Scholar 

  52. Paris, D. F., and Lewis, D. L., chemical and microbial degradation of ten selected pesticides in aquatic systems. Residue Rev.45 (1973) 95–124.

    Article  CAS  PubMed  Google Scholar 

  53. Rosenberg, A., and Alexander, M., Microbial cleavage of various organophosphorous insecticides. Appl. environ. Microbiol.37 (1979) 886–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sethunathan, N., Siddaramappa, R., Rajaram, K. P., Barik, S., and Wahid, P. A., Parathion: Residues in soil and water. Residue Rev.68 (1977) 91–122.

    CAS  PubMed  Google Scholar 

  55. Sethunathan, N., and Yoshida, T., AFlavobacterium sp. that degrades diazinon and parathion. Can. J. Microbiol.19 (1973) 873–875.

    Article  CAS  PubMed  Google Scholar 

  56. Sharabi, N., El Din, and Bordeleau, L. M., Biochemical decomposition of the herbicide N-(3,4-dichlorophenyl)-2-methylpentanimide and related compounds. Appl. Microbiol.18 (1969) 369–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Still, G. G., and Herrett, R. A., Methylcarbamates, carbanilates, and acylanilides, in: Herbicides-Chemistry, Degradation and Mode of Action, vol. 2, 2nd edn, pp. 609–624. Eds P. C. Kearney and D. D. Kaufman. Marcel Dekker. New York 1976.

    Google Scholar 

  58. Talbot, H. W., Johnson, L., Barik, S., and Williams, D., Properties of aPseudomonas sp. derived parathion hydrolase immobilized to porous glass and activated alumina. Biotechnol. Lett.4 (1982) 209–214.

    Article  CAS  Google Scholar 

  59. Storck, W. J., Pesticide profits belie mature market status. Chem. Engng News58 (1980) 10.

    Google Scholar 

  60. Tiedje, J. M. and Alexander, M., Enzymatic cleavage of the ether bond of 2,4-dichlorophenoxyacetate. J. agric. Fd Chem.17 (1969) 1080–1084.

    Article  CAS  Google Scholar 

  61. Tu, C. M., and Miles, J. R. W., Interactions between pesticides and soil microbes. Residue Rev.64 (1976) 17–65.

    CAS  PubMed  Google Scholar 

  62. Tweedy, B. G., Loeppky, C., and Ross, J. A., Metabolism of 3-(p-bromophenyl)-1-methoxy-1-methylurea. J. agric Fd Chem.18 (1970) 851–853.

    Article  CAS  Google Scholar 

  63. Wallnöfer, P., The decomposition of urea herbicides byBacillus sphaericus, isolated from soil. Weed Res.9 (1969) 333–339.

    Article  Google Scholar 

  64. Wallnöfer, P. R., and Bader, J., Degradation of urea herbicides by cell-free extracts ofbacillus sphaericus. Appl. Microbiol.19 (1970) 714–717.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zech, R., and Wigand, K. D., Organophosphate-detoxifying enzymes inE. coli. Gel filtration and isoelectric focussing of DFPase, paraoxonase and unspecific phosphohydrolases. Experientia31 (1975) 157–158.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Parts reprinted with permission from Munnecke, D.M., Johnson, L.M., Talbot, H. W., Jr, and Barik, S., Microbial metabolism and enzymology of selected pesticides, in Biodegradation and Detoxification of Environmental Pollutants, Chakrabarty, A.M., ed., pp. 1–32. CRC Press, Boca Raton, Florida 1982. Copyright The Chemical Rubber Company, CRC Press, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, L.M., Talbot, H.W. Detoxification of pesticides by microbial enzymes. Experientia 39, 1236–1246 (1983). https://doi.org/10.1007/BF01990361

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01990361

Keywords

Navigation