Skip to main content
Log in

Identification of mucondialdehyde as a novel stress metabolite

  • Research Articles
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

In a survey of antifungal stress compounds induced by cupric chloride we found that leaves ofChenopodium album exuded a highly fungitoxic metabolite mucondialdehyde (trans-2,trans-4-hexadienedial), which was associated with 13-oxo-9,11-tridecadienoic acids (cis-9,trans-11 andtrans-9,trans-11 isomers) presumably resulting from β-scission of 13-hydroperoxy-octadecadi(tri)enoic acid. The biogenesis and role as a general defensive agent in plants are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerwick, W. H., Moghaddam, M. F., and Hamberg, M., Archs Biochem. Biophys.290 (1991) 436; Oxylipin is introduced as an encompassing term for oxygenated compounds which are formed from fatty acids by reaction(s) involving at least one step of mono or dioxygenase-catalyzed oxygenation. As such, this term includes the eicosanoids as well as biosynthetically related compounds of longer and shorter chain length.

    Article  CAS  Google Scholar 

  2. Kato, T., Yamaguchi, Y., Namai, T., and Hirukawa, T., Biosci. Biotech. Biochem.57 (1993) 283.

    Article  CAS  Google Scholar 

  3. Vernenghi, A., and Ravisé, A., Can. J. Bot.64 (1986) 973.

    Article  CAS  Google Scholar 

  4. Croft, K. P. C., Jüttner, F., and Slusarenko, A. J., Pl. Physiol.101 (1993) 13.

    Article  CAS  Google Scholar 

  5. Vick, B. A., and Zimmerman, D. C., in: The Biochemistry of Plants Vol. 9, p. 53. P. K. Stumpf and E. E. Conn. Academic Press, Orlando 1987.

    Google Scholar 

  6. Siedow, J. N., A. Rev. Pl. Physiol. Pl. Molec. Biol.42 (1991) 145.

    Article  CAS  Google Scholar 

  7. Hatanaka, A., Kajiwara, T., and Sekiya, J., Chem. Phys. Lipids44 (1987) 341.

    Article  CAS  Google Scholar 

  8. Homans, A. L., and Fuchs, A., J. Chromat.51 (1970) 327.

    Article  CAS  Google Scholar 

  9. Saito, K., Kozaki, M., and Takahashi, K., Heterocycles31 (1990) 1491.

    Article  CAS  Google Scholar 

  10. Vick, B. A., and Zimmerman, D. C., Pl. Physiol.90 (1989) 125.

    Article  CAS  Google Scholar 

  11. Ayers, A. R., Ebel, J., Valent, B. S., and Albersheim, P., Pl. Physiol.57 (1976) 760.

    Article  CAS  Google Scholar 

  12. Murashige, T., and Skoog, F., Pl. Physiol.15 (1962) 473. The suspension culture ofC. albus was raised from a callus initially dedifferentiated from the seedlings, and grown at 27°C on a shaker in 500-ml shaking flasks containing 250 ml of MS medium; (sucrose, 3%; kinetin, 0.1 ppm; and 2,4-D, 2 ppm). The cells cultured for 2 weeks were stressed by the addition of CuCl2 (1.5 mM) and another two days incubation, at which point the filtered medium was extracted to give stress metabolites.

    Article  CAS  Google Scholar 

  13. Bonner, J., and Galston, A. W., Bot. Gaz.106 (1944) 185.

    Article  CAS  Google Scholar 

  14. Abdul-Wahab, A. S., and Rice, E. L., Bull. Torrey Bot. Club94 (1967) 486.

    Article  Google Scholar 

  15. Garssen, G. J., Vliegenthart, J. F. G., and Boldingh, J., Biochem. J.122 (1971) 327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chamulitrat, W., and Mason, R. P., Archs Biochem. Biophys.282 (1990) 65.

    Article  CAS  Google Scholar 

  17. Salzmann, U., Künn, H., Schewe, T., and Rapoport, S. M., Biochim. biophys. Acta795 (1984) 535.

    Article  CAS  PubMed  Google Scholar 

  18. Andrianarison, R.-H., Beneytout, J.-L., and Tixier, M., Pl. Physiol.91 (1989) 1280.

    Article  CAS  Google Scholar 

  19. Hamberg, M., Adv. Prostaglandin, Thromboxane, Leucotriene Res.21A (1990) 117.

    CAS  Google Scholar 

  20. Gafarova, T., Grechkin, A., and Tarchevskii, I., in: Proc. 9th Int. Symp. Plant Lipids, p. 301. Eds P. J. Quinn, and J. L. Harwood. Portland Press, London 1990.

    Google Scholar 

  21. Lam, B. K., Lin, Y.-L., Ho, H.-Y., and Wong, P. Y.-K., Biochem. biophys. Res. Commun.149 (1987) 1111.

    Article  CAS  PubMed  Google Scholar 

  22. Vaz, A. D. N., Roberts, E. S., and Coon, M. J., Proc. natl Acad. Sci. USA87 (1990) 5499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bernart, M. W., Whatley, G. G., and Gerwick, W. H., J. Nat. Prod.56 (1993) 245.

    Article  CAS  PubMed  Google Scholar 

  24. Zeringue, H. J. Jr. Phytochemistry31 (1992) 2305.

    Article  CAS  Google Scholar 

  25. The presence of mucondialdehyde was confirmed in the exudates from many plants stressed with a cupric chloride solution by TLC, TLC bioautography and/or GC-MS in comparison with an authentic compound. A further survey of stress compounds revealed that 6-hydroxy-trans-2,trans-4-hexadienal was produced byHypochoeris radicata L. (Compositae) in addition to mucondialdehyde. The results (Y. Maruta et al.) will be published elsewhere.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahara, S., Kasai, S., Inoue, M. et al. Identification of mucondialdehyde as a novel stress metabolite. Experientia 50, 137–141 (1994). https://doi.org/10.1007/BF01984952

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01984952

Key words

Navigation