Skip to main content
Log in

Application of differential scanning calorimetry in food research and food quality assurance

  • Review
  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) is the most widely used thermal analytical technique in food research and it has a great utility in quality assurance of food. Proteins are the most studied food components by thermal analysis including studies on conformation changes of food proteins as affected by various environmental factors, thermal denaturation of tissue proteins, food enzymes and enzyme preparations for the food industry, as well as effects of various additives on their thermal properties. Freezing-induced denaturation of food proteins and the effect of cryoprotectants are also monitored by DSC. Polymer characterization based on DSC of polysaccharides, gelatinization behaviour of starches and interaction of starch with other food components can be determined, and phase transitions during baking processes can be studied by DSC. Studies on crystallization and melting behaviour of fats observed by DSC indicate changes in lipid composition or help characterizing products. Thermal oxidative decomposition of edible oils examined by DSC can be used for predicting oil stability. Using DSC in the freezing range has a great potential for measuring and modelling frozen food thermal properties, and to estimate the state of water in foods and food ingredients. Research in food microbiology utilizes DSC in better understanding thermoadaptive mechanisms or heat killing of food-borne microorganisms. Isothermic microcalorimetric techniques provide informative data regarding microbial growth and microbial metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Schiraldi (ed.), Thermochim. Acta, 246 (1994) 249.

  2. R. L. Biltonen and E. Freire, CRC Critical Rev. in Biochem., Nov. (1978) 85.

  3. S. D. Arntfield, M. A. H. Ismond, E. D. Murray, Thermal Analysis of Foods, (eds.) V. R. Harwalkar and C. Y. Ma, Elsevier Appl. Science, London, 1990, p. 51.

    Google Scholar 

  4. M. Riva and A. Schiraldi, Italian J. Food Sci., 1 (1994) 43.

    Google Scholar 

  5. M. Riva, A. Schiraldi and L. Piazza, Thermochim. Acta, 246 (1994) 317.

    Article  Google Scholar 

  6. A. B. Buhri and P. P. Singh, J. Food Sci., 58 (1993) 1145.

    Google Scholar 

  7. C. D. Myers, Thermal Analysis of Foods, V. R. Harwalkar and C. Y. Ma (eds.), Elsevier Appl. Sci., London 1990, p. 16.

    Google Scholar 

  8. S. D. Arntfield, E. D. Murray, M. A. H. Ismond, A. M. Bernatsky, J. Food Sci., 54 (1989) 1624.

    Google Scholar 

  9. W. Pfeil, Biophys. Chem., 13 (1981) 181.

    Article  PubMed  Google Scholar 

  10. P.-O. Hegg, H. Martens and B. Löfquist, J. Sci. Fd. Agric., 29 (1978) 245.

    Google Scholar 

  11. P.-H. Yang and J. A. Rupley, Biochemistry, 18 (1979) 2654.

    Article  PubMed  Google Scholar 

  12. M. Rüegg, U. Moor and B. Blanc, J. Dairy Res., 44 (1977) 509.

    Google Scholar 

  13. E. A. Foegeding, P. R. Kuhn and C. C. Hardin, J. Agr. Food Chem., 40 (1992) 2092.

    Article  Google Scholar 

  14. T. X. Liu, P. Relkin, B. Launay, Thermochim. Acta, 246 (1994) 387.

    Article  Google Scholar 

  15. M. Duranti, A. Carpen, S. Iametti, S. Pagani, Milchwissenschaft, 46 (1991) 230.

    Google Scholar 

  16. L. Eynard, S. Iametti, P. Relkin and F. Bonomi, J. Agric. and Food Chem., 40 (1992) 1731.

    Article  Google Scholar 

  17. D. J. Wright and P. Wilding, J. Sci. Food Agric., 35 (1984) 357.

    PubMed  Google Scholar 

  18. A. L. Jacobson, G. Devin and H. Braun, Biochemistry, 20 (1981) 1694.

    Article  PubMed  Google Scholar 

  19. C. D. Myers, In: Characterisation of Proteins, F. Franks (ed.), Humena Press Clifton, New Yersey 1988, p. 491.

    Google Scholar 

  20. V. R. Harwalkar and C. Y. Ma, J. Food Sci., 52 (1987) 394.

    Google Scholar 

  21. P. L. Privalov and N. N. Khechinashvili, J. Mol. Biol., 86 (1974) 665.

    PubMed  Google Scholar 

  22. V. R. Harwalkar and C. Y. Ma, J. Food Sci., 52 (1987) 396.

    Google Scholar 

  23. D. J. Wright, I. B. Leach and D. Wilding, J. Sci. Food. Agric., 28 (1977) 557.

    PubMed  Google Scholar 

  24. A. Bertazzon and T. Y. Tsong, Biochemistry, 29 (1990) 6447.

    Article  PubMed  Google Scholar 

  25. S. D. Arntfield, E. D. Murray, Can. Inst. Food Sci. Technol. J., 14 (1981) 289.

    Google Scholar 

  26. R. C. Hoseney, K. Zeleznak and C. S. Lai, Cereal Chem., 63 (1986) 285.

    Google Scholar 

  27. G. Barone, F. Catanzano, P. Del Vecchio, D. Fessas, C. Giancola and G. Graziano, J. Thermal Anal., 42 (1994) 383.

    Google Scholar 

  28. E. Stabursvik and H. Martens, J. Sci. Food Agric., 31 (1980) 1034.

    Google Scholar 

  29. S. Barbut and C. J. Findley, J. Food Sci., 56 (1991) 180.

    Google Scholar 

  30. J. R. Quinn, D. P. Raymond and V. R. Harwalkar, J. Food Sci., 45 (1980) 1146.

    Google Scholar 

  31. S. D. Arntfield, E. D. Murray and M. A. H. Ismond, J. Food Sci., 51 (1986) 371.

    Google Scholar 

  32. K. Shiga, T. Kami and M. Fujii, J. Food Sci., 53 (1988) 1076.

    Google Scholar 

  33. J. W. Donovan, C. J. Mapes, J. G. Davies and J. A. Garibaldi, J. Food Agric., 26 (1975) 73.

    Google Scholar 

  34. J. F. Back, D. Oakenfull and M. B. Smith, Biochemistry, 18 (1979) 5191.

    Google Scholar 

  35. B. HÄgerdal and H. Martens, J. Food Sci., 41 (1976) 933.

    Google Scholar 

  36. E. Li-Chan, S. Nakai and D. F. Wood, J. Food Sci., 52 (1987) 31.

    Google Scholar 

  37. N. Kitabatake, M. Tahara and E. Doi, Agric. Biol. Chem., 54 (1990) 2205.

    Google Scholar 

  38. J. C. Burgarella, T. C. Lanier and D. D. Hamann, J. Food Sci., 50 (1986) 1588.

    Google Scholar 

  39. S. Barbut and C. J. Findlay, In: V. R. Harwalkar and C. Y. Ma (eds.), Thermal Analysis of Foods, Elsevier Appl. Science, London, New York 1990, p. 126.

    Google Scholar 

  40. H. Martens, E. Stabursvik and M Martens, J. Texture Stud., 13 (1982) 291.

    Google Scholar 

  41. E. Stabursvik, InformMAT, 3 (1990) 170.

    Google Scholar 

  42. J. W. Donovan and C. J. Mapes, J. Sci. Fd. Agric., 27 (1976) 197.

    Google Scholar 

  43. D. E. Raymond, V. R. Halwarkar and C. Y. Ma, Food Res. Internat., 25 (1992) 381.

    Article  Google Scholar 

  44. J. C. Acton and R. L. Dick, Poultry Sci., 65 (1986) 2051.

    Google Scholar 

  45. J. M. Kijowski and M. G. Mast, J. Food Sci., 53 (1988) 363.

    Google Scholar 

  46. J. M. Kijowski and M. G. Mast, J. Food Sci., 53 (1988) 367.

    Google Scholar 

  47. C. J. Findlay and D. W. Stanley, J. Food Sci., 49 (1984) 1529.

    Google Scholar 

  48. J. Csapó, Studies on effects of various phosphates on the water- and fat-binding capacity of meat emulsions (In Hungarian), M. Sc. Thesis, University of Horticulture and Food, Budapest 1991.

    Google Scholar 

  49. é. Rékasi, V. Mihályi and J. Farkas, A hÚs (In Hungarian), 2 (1992) 84.

    Google Scholar 

  50. M. Wootton, N. T. Hong and H. L. Zham Thi, J. Food Sci., 46 (1981) 1336.

    Google Scholar 

  51. Z. Incze, Studies on water-binding capacity of frozen meat paste. Application of cryoprotectants. (In Hungarian) M. Sc. Thesis, University of Horticulture and Food, Budapest 1991.

    Google Scholar 

  52. é. Rékasi, Z. Incze, V. Mihályi and J. Farkas, A hÚs (In Hungarian), 2 (1992) 75.

    Google Scholar 

  53. E. Stabursvik, K. Firetheim and T. Froystein, J. Sci. Food Agric., 35 (1984) 240.

    PubMed  Google Scholar 

  54. J. R. Wagner and M. C. Anon, J. Food Technol., 21 (1986) 9.

    Google Scholar 

  55. F. Mietsch, A. Halász and J. Farkas, Die Nahrung, 38 (1994) 47.

    Google Scholar 

  56. C. G. Biliaderis, Thermal Analysis of Foods. V. R. Harwalkar and C. Y. Ma (eds.), Elsevier Appl. Sci., London & New York 1990, p. 168.

    Google Scholar 

  57. C. G. Biliaderis, Food Technol., (1992) 98.

  58. A. C. Eliasson, J. Silverio and E. Tjerneld, J. Cereal Sci., 13 (1991) 27.

    Google Scholar 

  59. C. G. Biliaderis, C. M. Page, T. J. Maurice and B. O. Juliano, J. Agric. Food Chem., 34 (1986) 6.

    Article  Google Scholar 

  60. P. Chinachoti, M. S. Kim-Shim, F. Mari and L. Lo, Cereal Chem., 68 (1991) 245.

    Google Scholar 

  61. J. Vainionpaeae, P. Forssel and T. Virtanen, Starch/Staerke, 45 (1993) 19.

    Google Scholar 

  62. E. Garcia, F. M. Lajolo, J. Agric. Food Chem., 42 (1994) 612.

    Article  Google Scholar 

  63. M. Gudmundsson, A. C. Eliasson, S. Bengtsson and P. Amay, Starch/StÄrke, 43 (1991) 5.

    Google Scholar 

  64. M. Gudmundsson, Thermochim. Acta, 246 (1994) 329.

    Article  Google Scholar 

  65. R. H. Wilson, B. J. Goodfellow, P. S. Belton, B. G. Osborne, G. Oliver and P. L. Russell, J. Sci. Food Agric., 54 (1991) 471.

    Google Scholar 

  66. C. G. Biliaderis and J. R. Tonogai, J. Agric. & Food Chem., 39 (1991) 833.

    Google Scholar 

  67. A. C. Eliasson, Thermochim. Acta, 246 (1994) 343.

    Article  Google Scholar 

  68. J. Lelièvre and H. Liu, Thermochim. Acta, 246 (1994) 309.

    Article  Google Scholar 

  69. L. Slade and H. Levine, J. Food Engng., 24 (1995) 431.

    Article  Google Scholar 

  70. D. Q. Wang and E. Kolbe, J. Food Sci., 56 (1991) 302.

    Google Scholar 

  71. M. E. Sahagian, H. D. Goff, Thermochim. Acta, 246 (1994) 271.

    Article  Google Scholar 

  72. M. Karel, S. Angela, P. Buera, R. Karmas, G. Levi and Y. Roos, Thermochim. Acta, 246 (1994) 249.

    Article  Google Scholar 

  73. H. D. Goff, Food Res. Internat., 27 (1994) 187.

    Article  Google Scholar 

  74. M. M. Sá and A. M. Sereno, Thermochim. Acta, 246 (1994) 285.

    Article  Google Scholar 

  75. H. Levine and L. Slade, Thermal Analysis of Foods, V. R. Harwalkar and C. P. Ma (eds.), Elsevier Appl. Science, London & New York (1990) 221.

    Google Scholar 

  76. A. A. Patel and E. Frede, Lebensm. Wiss. u. Technol., 24 (1991) 323.

    Google Scholar 

  77. D. J. Cebula and K. W. Smith, J. Americ. Oil Chem. Soc., 68 (1991).

  78. J. Zhao and D. S. Reid, Thermochim. Acta, 246 (1994) 405.

    Article  Google Scholar 

  79. B. Ranjana, C. Badiopadhyay and V. V. R. Subrahmanyam, Indian J. Dairy Sci., 44 (1991) 62.

    Google Scholar 

  80. S. M. Dyszel and B. C. Pettit, Thermochim. Acta, 246 (1994) 405.

    Article  Google Scholar 

  81. E. Kaiserberger, Anal. Proceedings, 27 (March) (1990) 64.

    Article  Google Scholar 

  82. B. Kowalski, Acta Alimentaria Polonica, 14 (1988) 195.

    Google Scholar 

  83. A. S. Jurado, T. J. T. Pinheiro and V. M. C. Madeira, Arch. Biochem. Biophys., 289 (1991) 167.

    Article  PubMed  Google Scholar 

  84. C. A. Miles, B. M. Mackey and S. E. Parsons, J. Gen. Microbiol., 132 (1984) 939.

    Google Scholar 

  85. B. M. Mackey, C. A. Miles, S. E. Parsons and D. A. Seymour, J. Gen. Microbiol., 137 (1992) 2361.

    Google Scholar 

  86. P. J. Stephens and M. V. Jones, FEMS Microbiol. Letters, 106 (1993) 177.

    Article  Google Scholar 

  87. B. H. Belliveau, T. C. Beaman, H. S. Pankratz and P. Gerhardt, J. Bacteriol., 174 (1992) 4463.

    PubMed  Google Scholar 

  88. Cs. Mohácsi-Farkas, J. Farkas and A. Simon, Acta Alimentaria, 23 (1994) 157.

    Google Scholar 

  89. C. T. Verrips and R. H. Kwast, European J. Appl. Microbiol., 4 (1977) 225.

    Article  Google Scholar 

  90. P. C. Teixeira and Cs. Mohácsi-Farkas, Abstracts of the 12th Congress of the Hungarian Society for Microbiology, Budapest, August 23–25. (1995).

  91. J. R. Lepock, H. E. Frey and W. E. Inniss, Biochim. et Biophys. Acta, 1055 (1990) 19.

    Article  Google Scholar 

  92. B. M. Mackey, S. E. Parsons, C. A. Miles and R. J. Owen, J. Gen. Microbiol., 134 (1988) 1185.

    PubMed  Google Scholar 

  93. W. W. Forrest, D. J. Walker and M. F. Hopgood, J. Bacteriol., 82 (1961) 685.

    PubMed  Google Scholar 

  94. A. Belaich and J. P. Belaich, J. Bacteriol., 125 (1976) 14.

    PubMed  Google Scholar 

  95. R. Brettel, Application of Calorimetry in Life Sciences. I. Lamprecht and B. Schaarschmidt (eds.), Walter de Gruyter, Berlin 1977, p. 129.

    Google Scholar 

  96. L. Gram and H. Sogaard, J. Food Prot., 48 (1985) 341.

    Google Scholar 

  97. L. E. Sacks and E. Menefee, J. Food Sci., 37 (1972) 928.

    Google Scholar 

  98. E. A. Boling, G. C. Blanchard and W. J. Russell, Nature, 241 (1973) 472.

    PubMed  Google Scholar 

  99. T. Fujita, P. R. Monk and I. Wadro, J. Dairy Res., 45 (1978) 457.

    PubMed  Google Scholar 

  100. W. Sand, A. Schröter, P. Fortnagel and E. Bock, J. Microbiological Methods, 12 (1990) 247.

    Article  Google Scholar 

  101. X. Chang-Li, T. Hou-Kuau, S. Zhau-Hua, Q. Song-Sheng, L. Yao-Ting and L. Hai-Shui, Thermochim. Acta, 123 (1988) 33.

    Article  Google Scholar 

  102. Z. Honglin, S. Haitao, N. Zhaodong and L. Yongjun, J. Thermal Anal., 44 (1995) 105.

    Google Scholar 

  103. D. Appel and B. Löfquist, Meat Sci., 2 (1978) 251.

    Article  Google Scholar 

  104. W. L. Kerr and D. S. Reid, Thermochim. Acta, 246 (1994) 299.

    Article  Google Scholar 

  105. P. Chinachoti, Thermochim. Acta, 246 (1994) 357.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkas, J., Mohácsi-Farkas, C. Application of differential scanning calorimetry in food research and food quality assurance. Journal of Thermal Analysis 47, 1787–1803 (1996). https://doi.org/10.1007/BF01980925

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01980925

Keywords

Navigation