Skip to main content
Log in

Mechanisms of oxidant-induced changes in erythrocytes

  • Inflammation and Immunomodulation
  • Published:
Agents and Actions Aims and scope Submit manuscript

Abstract

There is an increasing body of experimental studies demonstrating the toxic effects of oxygen-derived free radicals. Evidence supports an important role for free radicals in ischemic injuries, inflammation, and chemical-induced tissue injury. Free radicals are involved in normal biochemical processes like oxidative reduction and cellular metabolism; however, they also mediate disease processes. The participation of oxygen free radicals in lysis of red cells is important in some situations of intravascular hemolysis. This article will review neutrophil-derived oxygen free radicals, emphasizing: (1) their effects on the erythrocyte and (2) how these effects may be attenuated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Johnston, D. E. Lehmeyer and L. A. Guthrie,Generation of superoxide anion and chemiluminescence by human monocytes during phagocytosis and on contact with surface bound immunoglobulin G. J. Exp. Med.143, 1551–1556 (1976).

    Article  PubMed  Google Scholar 

  2. J. T. Curutte and B. M. Babior,Biological defense mechanisms: The effect of bacteria and serum on superoxide production by granulocytes. J. Clin. Invest.53, 1662–1672 (1974).

    PubMed  Google Scholar 

  3. W. Pick and Y. Keisari,Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages: Induction by multiple non-phagocytic stimuli. Cell. Immunol.59, 301–318 (1931).

    Article  Google Scholar 

  4. L. R. DeChatelet, P. S. Shirley and R. B. Johnston,Effect of phorbol myristate acetate on the oxidative metabolism of human polymorphonuclear leukocytes. Blood47, 545–554 (1976).

    PubMed  Google Scholar 

  5. R. K. Root and J. A. Metacalf,H 2O2 release from human granulocytes during phagocytosis: Relationship to superoxide anion formation and cellular catabolism of H2O2: Studies with normal and cytochalasin B-treated cells. J. Clin. Invest.60, 1266–1279 (1977).

    PubMed  Google Scholar 

  6. B. D. Goldstein and O. J. Balchum,Effect of ozone on lipid peroxidation in the red blood cell. Proc. Soc. Exp. Biol. Med.126, 356 (1967).

    PubMed  Google Scholar 

  7. E. L. Becker, M. Sigman and J. M. Oliver,Superoxide production induced in rabbit polymorphonuclear leukocytes by synthetic chemotactic peptides and A23187: The nature of the receptor and the requirements of Ca 2+. Am. J. Pathol.95, 81–98 (1979).

    PubMed  Google Scholar 

  8. B. M. Baboir,Oxygen-dependent microbial killing by phagocytes. N. Engl. J. Med.298, 721–725 (1978).

    PubMed  Google Scholar 

  9. J. M. McCord,Free radicals and inflammation: Protection of synovial fluid by superoxide dismutase. Science185, 529–531 (1974).

    PubMed  Google Scholar 

  10. R. F. del Maestro and I. Alexander,Oxygen derived free radicals: Their role in inflammation. InThe inflammatory process. pp. 113–143 (P. Venge, A. Lindbom, Eds.). Almquist and Wiksell International, Stockholm, Sweden 1981.

    Google Scholar 

  11. S. J. Klebanoff,Oxygen metabolism and the toxic properties of phagocytes. Ann. Intern. Med.93, 480–490 (1980).

    PubMed  Google Scholar 

  12. S. J. Klebanoff,Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J. Bacteriol.95, 2131–3138 (1968).

    PubMed  Google Scholar 

  13. A. A. Barber and F. Bernheim,Lipid peroxidation: Its measurement, occurrence and significance in animal tissues. Adv. Geront. Res.2, 355–404 (1967).

    Google Scholar 

  14. C. J. Dillard and A. L. Tappel,Fluorescent damage products of lipid peroxidation. InMethods in enzymology. Vol. 105, pp. 337–341 (L. Packer, Ed.). Academic Press, New York 1984.

    Google Scholar 

  15. B. L. Fletcher, C. J. Dillard and A. L. Tappel,Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal. Biochem.52, 1–9 (1973).

    Article  PubMed  Google Scholar 

  16. C. J. Dillard and A. L. Tappel,Fluorescent products have reaction of peroxidizing polyunsaturated fatty acids with phosphatide ethanolamine and phenylalanine. Lipids8, 183–189 (1973).

    PubMed  Google Scholar 

  17. A. L. Tappel,Measurement of and protection from in vivo lipid peroxidation. InFree radicals in biology. Vol. 4, pp. 1–47 (W. Pryor, Ed.). Academic Press, New York 1980.

    Google Scholar 

  18. E. N. Frankel,Lipid oxidation. Prog. Lipid. Res.19, 1–22 (1980).

    Article  PubMed  Google Scholar 

  19. E. W. Kellogg and T. Fridovich,Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxide by a xanthine oxidase system. J. Biol. Chem.250, 8812–8817 (1975).

    PubMed  Google Scholar 

  20. J. M. C. Gutteridge,The protective action of superoxide dismutase on metal catalyzed peroxidation of phospholipids. Biochem. Biophys. Res. Comm.77, 379–386 (1977).

    PubMed  Google Scholar 

  21. J. M. McCord,Free radicals and inflammation: Protection of synovial fluid by superoxide dismutase. Science185, 529–531 (1974).

    PubMed  Google Scholar 

  22. R. A. Greenwald,Oxygen radicals and connective tissue. J. Rheumatol.8, 185–187 (1979).

    Google Scholar 

  23. R. A. Greenwald and W. W. May,Inhibition of collagen gelation by action of the superoxide radical. Arth. Rheumatol.22, 251–259 (1979).

    Google Scholar 

  24. W. S. Lin, D. A. Armstrong and M. Lal,Effects of superoxide dismutase dithiothreital and formate ion on the inactivation of papain by hydroxyl and superoxide radicals in aerated solutions. Int. J. Rad. Biol.33, 231–243 (1978).

    Google Scholar 

  25. F. Lavelle, A. M. Michelson and L. Dimitnijeur,Biological protection by superoxide dismutase. Biochem. Res. Comm.55, 350–357 (1973).

    Article  Google Scholar 

  26. D. G. Wickens, T. L. Graff, J. Lunce and T. L. Dormandy,Free radical-mediated aggregation of human gamma globulin. Agents and Actions11, 650–651 (1981).

    Article  PubMed  Google Scholar 

  27. H. Carp and A. Janoff,In vitro suppression of serum elastase-inhibitory capacity by reactive oxygen species generated by phagocytosing polymorphonuclear leukocytes. J. Clin. Invest.63, 793–797 (1978).

    Google Scholar 

  28. R. A. Clark, S. Szat, K. Venkalasubvamanian and E. Schiffman,Chemotactic factor inactivation by myeloperoxidase-mediated oxidation of methionine. J. Immunol.124, 2020–2026 (1980).

    PubMed  Google Scholar 

  29. S. J. Weiss,Neutrophil-generated hydroxyl radicals destroy RBC targets. Clin. Res.27, 466A (1979).

    Google Scholar 

  30. S. J. Klebanoff and R. A. Clark,Hemolysis and iodination of erythrocyte components by a myeloperoxidase-mediated system. Blood45, 699–707 (1975).

    PubMed  Google Scholar 

  31. E. W. Kellogg and I. Fridovich,Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxide. J. Biol. Chem.252, 6721–6728 (1977).

    PubMed  Google Scholar 

  32. G. Bartosz, R. Fried, E. Grzelinska and W. Leyko,Effect of hyperoxide radical on bovine-erythrocyte membrane. Eur. J. Biochem.73, 261–264 (1977).

    Article  PubMed  Google Scholar 

  33. T. Sachs, C. F. Moldow, P. R. Craddock, J. K. Bowers and H. S. Jacob,Oxygen radical-mediated endothelial cell damage by complement-stimulated granulocytes: An in vitro model of immune vascular damage. J. Clin. Invest.61, 1161–1167 (1978).

    PubMed  Google Scholar 

  34. R. H. Simon, C. H. Scroggin and D. Patterson,Hydrogen peroxide causes the fatal injury to human fibroblasts exposure to oxygen radicals. J. Biol. Chem.256, 7181–7186 (1981).

    PubMed  Google Scholar 

  35. R. A. Clark and S. J. Klebanoff,Myeloperoxidase-mediated platelet release reaction. J. Clin. Invest.63, 177–183 (1979).

    PubMed  Google Scholar 

  36. A. Slivka, A. F. Lobuglio and S. J. Weiss,A potential role for hypochlorous acid in granulocyte-mediated tumor cell cytotoxicity. Blood52 (2), 347–350 (1980).

    Google Scholar 

  37. R. A. Clark and S. J. Klebanoff,Neutrophil-mediated tumor cell cytotoxicity: Role of the peroxidase system. J. Exp. Med.141, 1442–1447 (1975).

    Article  PubMed  Google Scholar 

  38. D. C. Smith and S. J. Klebanoff,A uterine-mediated sperm inhibitory system. Biol. Repro.3, 229–235 (1970).

    Google Scholar 

  39. B. M. Babior,Oxidizing radicals and red cell destruction. InThe function of red bloods cells: Erythrocyte pathobiology. pp. 173–195 (E. F. H. Wallach, Ed.). Alan R. Liss, Inc., New York 1981.

    Google Scholar 

  40. H. S. Jacob and S. E. Lux,Degradation of membrane phospholipids and thiols in peroxide hemolysis: Studies in vitamin E deficiency. Blood32, 549–568 (1958).

    Google Scholar 

  41. A. Clark and N. H. Hunt,Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infect. and Immun.39, 1–6 (1983).

    Google Scholar 

  42. A. Tomoda, H. Suzuki, Y. Fukuhara, Y. Ueda, K. Niho, Y. Yoneyama and K. Kakinuma,Involvement in active oxygens released by activated leukocytes in hemolytic mechanisms of G6PD deficient red cells. Acta Haematol. Jpn.47, 189–194 (1981).

    Google Scholar 

  43. W. B. Gratzer,The red cell membrane and its cytoskeleton, J. Biochem.198, 1–8 (1981).

    Google Scholar 

  44. S. K. Gain and S. B. Shohet,Calcium potentiates the peroxidation of erythrocyte membrane lipids. Biochem. Biophys. Acta.642, 46–54 (1981).

    PubMed  Google Scholar 

  45. D. Chiu, B. Lubin and S. B. Shohet,Peroxidative reactions in red cell biology. InFree radicals in biology. Vol. 5, pp. 115–160 (W. A. Pryor, Ed.). Academic Press, New York 1982.

    Google Scholar 

  46. W. A. Pryor,Free radical reactions in biological systems. InFree radicals in biology. Vol. IV, pp. 1–47 (W. A. Pryor, Ed.). Academic Press, New York 1976.

    Google Scholar 

  47. A. L. Tappel,The mechanism of oxidation of unsaturated fatty acids catalyzed by hematin compounds. Arch. Biochem. Biophys.44, 378–395 (1953).

    Article  PubMed  Google Scholar 

  48. R. W. Carrell, C. C. Winterbourn and E. A. Rachmilewitz,Activated oxygen and hemolysis, Br. J. Haematol.30, 259–264 (1975).

    PubMed  Google Scholar 

  49. A. Lubin and J. F. Desforges,Effect of Heinz antibodies on red cell deformability. Blood39, 658–665 (1972).

    PubMed  Google Scholar 

  50. J. Stocks and T. L. Dormandy,The autoxidation of human red cell lipids induced by hydrogen peroxide. Br. J. Haematol.20, 95–111 (1971).

    PubMed  Google Scholar 

  51. C. W. M. Haest, D. Kamp, G. Plasa and B. Dueticke,Intra- and intermolecular cross-linking of membrane proteins in intact erythrocytes and ghosts by SH-oxidizing agents. Biochem. Biophys. Acta.469, 226–230 (1977).

    PubMed  Google Scholar 

  52. S. J. Weiss,The role of superoxide in the destruction of erythrocyte targets by human neutrophils. J. Biol. Chem.225, 9912–9917 (1980).

    Google Scholar 

  53. R. E. Lynch and I. Fridovich,Effects of superoxide on the erythrocyte membrane. J. Biol. Chem.256, 1838–1845 (1978).

    Google Scholar 

  54. H. A. Jacob,Mechanisms of Heinz body formation and attachment to red cell membrane. Sem. Hematol.7, 341–354 (1970).

    Google Scholar 

  55. G. M. Vercellotti, B. S. van Asbeck and H. S. Jacob,Oxygen radical-induced erythrocyte hemolysis by neutrophils. Critical role of iron and lactoferrin. J. Clin. Invest.76 (3), 956–962 (1985).

    PubMed  Google Scholar 

  56. R. A. Rifkind,Heinz body anemia: An ultrastructural study. II. Red cell sequestration and destruction. Blood26, 433–448 (1965).

    PubMed  Google Scholar 

  57. L. T. Chen and L. Weiss,The role of the sinus wall in the passage of erythrocytes through the spleen. Blood41, 529–537 (1973).

    PubMed  Google Scholar 

  58. H. F. Bunn, B. G. Forget and H. M. Ranney,Human hemoglobins. pp. 282–311. WB Saunders Co., Philadelphia 1977.

    Google Scholar 

  59. L. Kesner, R. J. Kinya and P. C. Chan,Inhibition of erythrocyte membrane (Na + and K+)-activated ATPase by ozone-treated phospholipids. J. Biol. Chem.254, 2705 (1979).

    PubMed  Google Scholar 

  60. B. Roelofsen and L. L. M. van Deenen,Lipid requirement of membrane-bound ATPase: Studies on human erythrocyte. Eur. J. Biochem.40, 245 (1973).

    PubMed  Google Scholar 

  61. L. M. Snyder, N. L. Fortier, J. Tainor, J. Jacobs, L. Leb, B. Lubin, D. Chin, S. Shohet and N. Mohandas,Effect of hydrogen peroxide exposure on normal human red cell deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. J. Clin. Invest.76, 1971–1977 (1985).

    PubMed  Google Scholar 

  62. J. R. Hatherill, G. O. Till, L. H. Bruner and P. A. Ward,Thermal injury, intravascular hemolysis, and toxic oxygen products. J. Clin. Invest.78, 629–636 (1986).

    PubMed  Google Scholar 

  63. K. S. Chio, V. Reiss, B. Fletcher and A. L. Tappel,Peroxidation of subcellular organelles: Formation of lipofuscin-like fluorescent pigments. Science166, 1535–1536 (1969).

    Google Scholar 

  64. K. S. Chio and A. L. Tappel,Synthesis and characterization of the fluorescent products derived from malonaldehyde and amino acids. J. Biochem.8, 2821–2827 (1969).

    Article  Google Scholar 

  65. S. J. Weiss,Neutrophil-mediated methemoglobin formation in the erythrocyte. J. Biol. Chem.257, 2947–2953 (1982).

    PubMed  Google Scholar 

  66. D. J. Weiss and J. S. Klausner,Neutrophil-induce erythrocyte injury: A potential cause of erythrocyte destruction in the anemia associate with inflammatory disease. Vet. Pathol.25, 450–455 (1988).

    PubMed  Google Scholar 

  67. H. Robin and J. D. Harley,Factors influencing response of mammalian species to the methemoglobin reduction test. Aust. J. Exp. Biol. Med. Sci.44, 519–526 (1966).

    PubMed  Google Scholar 

  68. J. M. Stolk and R. P. Smith,Species differences in methemoglobin reductase activity. Biochem. Pharmacol.15, 343–351 (1966).

    Article  PubMed  Google Scholar 

  69. G. O. Till, D. C. Beauchamp, D. Menapore, W. Tourtellotte, R. Kunkel, K. J. Johnson and P. A. Ward,Oxygen radical-dependent lung damage following thermal injury of rat skin. J. Trauma.23, 269–277 (1983).

    PubMed  Google Scholar 

  70. H. J. Muller-Eberhard,Complement, Ann. Rev. Biochem.44, 697–724 (1975).

    Google Scholar 

  71. A. F. Esser,Interactions between complement proteins and biological and model membranes. InBiological membranes. Vol. 4, pp. 277–325 (D. Chapman, Ed.). Academic Press, New York 1982.

    Google Scholar 

  72. R. J. Pickering, M. R. Wolfson, R. A. Good and H. Gewurz,Passive hemolysis by serum and cobra venom factor. A new mechanism inducing membrane damage by complement. Proc. Natl. Acad. Sci. USA62, 521–527 (1969).

    PubMed  Google Scholar 

  73. A. Miyama, T. Kato, I. Minoda, T. Ueda and S. Kashiba,Activation of terminal components of human complement by a trypsin-activated complex of human factor B and cobra venom factor. Jpn. J. Microbiol.20, 507–516 (1976).

    PubMed  Google Scholar 

  74. S. van Asbeck, J. Hoidal, B. Schwartz, G. Vercellotti, C. Moldow and H. Jacob,Insufflated red cells protect lungs from hyperoxic damage: Role of RBC glutathione in scavenging toxic O 2 radicals. Clin. Res.32, 563A (1984).

    Google Scholar 

  75. J. A. Fee and H. D. Teitlebaum,Evidence that superoxide dismutase plays a role in protecting red blood cells against peroxidative hemolysis. Biochem. Biophys. Res. Comm.49, 150–158 (1972).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH Grants HL-31963, GM-28499, and GM-29507.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatherill, J.R., Till, G.O. & Ward, P.A. Mechanisms of oxidant-induced changes in erythrocytes. Agents and Actions 32, 351–358 (1991). https://doi.org/10.1007/BF01980898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01980898

Keywords

Navigation