Skip to main content
Log in

Thermal denaturation of ribonuclease T1 a DSC study

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The thermal denaturation of microbial Ribonuclease T1 (RNAase T1) as a function ofpH, was studied by means of DSC microcalorimetry. The midpoint denaturation temperatures, enthalpy changes and heat capacity changes of Ribonuclease T1 were compared with those obtained for pancreatic Ribonuclease A (RNAase A). It was found that the microbial T1 protein undergoes a more complex conformational transition than the simple two-state transition shown by Ribonuclease A. The hypothesis of the presence of a ‘molten globule’ form is discussed. The conformational stability of RNAase T1 is lower than that of RNAase A at highpH values. Indeed, the maximum stability of RNAase T1 occurs atpH ≈ 5, whereas that of RNAase A occurs atpH ≈ 8. AtpH=3.7 an irreversible aggregation phenomenon was indicated by the existence of a reproducible exothermic peak. The conformational transition of RNAase T1 is reversible in the range ofpH 4.5–7.0, whereas it becomes irreversible atpH≥8.0 as for RNAase A.

Zusammenfassung

Mittels DSC Mikrokalorimetrie wurde die thermische Denaturierung von mikrobieller Ribonuklease T1 (RNAase T1) als eine Funktion despH-Wertes untersucht. Die mittleren Denaturierungstemperaturen, Enthalpieänderungen und Wärmekapazitätsänderungen von Ribonuklease T1 wurden mit denen von pankreatischer Ribonuklease A (RNAase A) verglichen. Man fand, daß das mikrobielle Protein T1 einen komplizierteren Konformationsübergang zeigt, als die bei Ribonuklease A auftretende einfache Zweizustandsänderung. Es wird weiterhin die Hypothese des Auftretens einer “geschmolzenen Kügelchen” Form diskutiert. Die Konformationsbeständigkeit von RNAase T1 ist bei hohenpH-Werten niedriger als die von RNAase A. Die größte Stabilität von RNAase T1 liegt bei einempH-Wert von etwa 5, während die von RNAase A bei etwapH=8. Bei einempH-Wert von 3.7 wird durch einen reproduzierbaren exothermen Peak das Auftreten einer irreversiblen Aggregation angezeigt. Die Konformationsänderungen von RNAase T1 sind impH-Wertbereich 4.5 bis 7.0 reversibel, die von RNAase A sind irreversibel bei einempH-Wert von mindestens 8.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Wlodawer in F. A. Jurnak, A. McPherson (Eds) ‘Biological Macromolecules & Assemblies, vol.2 Nucleic Acids and Interactive Proteins’ Wiley, New York 1985, p. 393.

    Google Scholar 

  2. S. J. Wearne and T. E. Creighton, Proteins Struct., Funct., Genet., 4 (1988) 251.

    Google Scholar 

  3. J. B. Udgaonkar and R. L. Baldwin, Nature, 335 (1988) 694.

    Article  PubMed  Google Scholar 

  4. T. E. Creighton, Proc. Natl. Acad. Sci. USA, 85 (1988) 5082.

    PubMed  Google Scholar 

  5. D. M. Rothwarf and H. A. Scheraga, J. Am. Chem. Soc., 113 (1991) 6293.

    Article  Google Scholar 

  6. P. L. Privalov and N. N. Khechinashvili, J. Mol. Biol. 86 (1974) 665.

    PubMed  Google Scholar 

  7. Y. Fujita and Y. Noda, Bull. Chem. Soc. Jpn. 57 (1984) 1891.

    Google Scholar 

  8. G. Barone, P. Del Vecchio, C. Giancola and G. Notaro, Thermochim. Acta, 199 (1992) 189.

    Article  Google Scholar 

  9. G. Barone, P. Del Vecchio, D. Fessas, C. Giancola, G. Graziano and A. Verdoliva, to be published

  10. C. N. Pace, Methods Enzymol., 131 (1986) 266.

    PubMed  Google Scholar 

  11. C. N. Pace and G. R. Grimsley, Biochemistry, 27 (1988) 3242.

    Article  PubMed  Google Scholar 

  12. C. N. Pace and D. V. Laurents, Biochemistry, 28 (1989) 2520.

    Article  PubMed  Google Scholar 

  13. C. N. Pace, B. A. Shirley and J. A. Thomson, in T. E. Creighton Ed. (1989): Protein Structure: a Practical Approach, IRL Press Oxford.

    Google Scholar 

  14. C. N. Pace, D. V. Laurents and J. A. Thomson, Biochemistry, 29 (1990) 2565.

    Article  Google Scholar 

  15. F. G. Walz and S. Kitareewan, J. Biol. Chem., 265 (1990) 7127.

    PubMed  Google Scholar 

  16. C. N. Pace, N. Heinemann, H. Hahn and W. Saenger, Angew. Chemie. Intern. Ed. 30 (1991) 343.

    Article  Google Scholar 

  17. B. A. Shirley, P. Stanssens, J. Steyaert and C. N. Pace, J. Biol. Chem., 264 (1989) 11621.

    PubMed  Google Scholar 

  18. S. Iida and T. Ooi, Biochemistry, 8 (1969) 3897.

    Article  PubMed  Google Scholar 

  19. C. Tanford and J. D. Hauenstein, J. Am. Chem. Soc., 78 (1956) 5287.

    Article  Google Scholar 

  20. F. Inagaki, Y. Kawano, I. Shimada, K. Takahasi and T. Miyazawa, J. Biochem. (Tokio) 89 (1981) 1185.

    Google Scholar 

  21. J. B. Matthew and F. M. Richards, Biochemistry, 21 (1982) 4989.

    Article  PubMed  Google Scholar 

  22. M. Sela and C. B. Anfinsen, Biochem. Biophys. Acta, 24 (1970) 229.

    Article  Google Scholar 

  23. C.-Q. Hu, J. M. Sturtevant, J. A. Thomson, R. E. Erickson and C. N. Pace, Biochemistry, 31 (1992) in press.

  24. K. Takahashi, J. Biochem. (Tokyo), 72 (1972) 1469.

    Google Scholar 

  25. G. Barone, P. Del Vecchio, D. Fessas, C. Giancola and G. Graziano, J. Thermal Anal., This Issue.

  26. P. L. Privalov, Adv. Protein Chem., 33 (1979) 167.

    PubMed  Google Scholar 

  27. W. Becktel and J. Schellman, Biopolymers, 26 (1987) 1859.

    Article  PubMed  Google Scholar 

  28. T. Kiefhaber, F. X. Schmid, M. Renner and H.-J. Hinz, Biochemistry, 29 (1990) 8250.

    Article  PubMed  Google Scholar 

  29. P. S. Kim and R. L. Baldwin, Annu. Rev. Biochem., 51 (1982) 459.

    PubMed  Google Scholar 

  30. F. M. Hughson, P. E. Wright and R. L. Baldwin, Science, 249 (1990) 1544.

    PubMed  Google Scholar 

  31. H. Christensen and R. H. Pain, Eur. Biophys. J., 19 (1991) 221.

    Article  PubMed  Google Scholar 

  32. J. J. Ewbank and T. Creighton, Nature, 350 (1991) 518.

    PubMed  Google Scholar 

  33. D. Xie, V. Bhakuni and E. Freire, Biochemistry, 30 (1991) 10673.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was financed by the National Research Council (C.N.R.-Rome) and by Ministry of University and Scientific and Technological Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barone, G., Del Vecchio, P., Fessas, D. et al. Thermal denaturation of ribonuclease T1 a DSC study. Journal of Thermal Analysis 38, 2791–2802 (1992). https://doi.org/10.1007/BF01979753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01979753

Keywords

Navigation