Skip to main content
Log in

Modelling short-term effects of sulphur dioxide. 1. A model for the flux of SO2 into leaves and effects on leaf photosynthesis

  • Published:
Netherlands Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A model for the flux of atmospheric SO2 into leaves and the effects of SO2 metabolites (S(IV) compounds) on leaf photosynthesis and stomatal resistance is presented. The S(IV) balance in the leaf is determined by the rate of SO2 uptake and S(IV) removal by oxidation to sulphate. Toxic S(IV) compounds reduce the rate of photosynthesis and induce stomatal closure as a result of feed back control of stomatal resistance by photosynthesis. Other proposed mechanisms, like effects through a pH reduction, are not likely to play a role in short-term effects of realistic SO2 concentrations. The model contains two key parameters which describe biochemical characteristics: a time coefficient for S(IV) oxidation and a parameter describing the sensitivity of photosynthesis for S(IV).

Simulation results demonstrate the potential of plants to avoid extremely toxic concentrations of S(IV) in the leaf by three mechanisms: (i) rapid oxidation of S(IV) to less toxic sulphate, (ii) relatively high resistance to SO2 uptake and (iii) feed back control between photosynthesis and stomatal resistance. S(IV) concentrations in the leaf and SO2 concentrations in the stomatal cavities in stable situations are less than 1% of concentrations which build up without these mechanisms. Leaf thickness appears to be an important factor determining the susceptibility of plants to air pollutants. Thin leaves should be more sensitive than thicker leaves. It is concluded that effects of SO2 on photosynthesis should be related to the uptake per unit of leaf volume instead of the commonly used flux per unit leaf area. The model accurately described the time course of photosynthetic reduction during a short fumigation period and subsequent recovery period.

Samenvatting

Een model wordt gepresenteerd waarmee de flux van SO2 vanuit de lucht in het blad en de effecten van SO2-metabolieten op de bladfotosynthese en stomataire geleidbaarheid kan worden gesimuleerd. De S(IV)-balans in het blad wordt bepaald door de SO2 opnamesnelheid, en de snelheid van S(IV)-verwerking door met name oxidatie tot sulfaat. Toxische S(IV)-componenten reduceren de fotosynthese en veroorzaken daardoor stomataire sluiting. Andere in de literatuur beschreven mechanismen voor de effecten van SO2, zoals effecten door een daling van de pH, spelen geen rol op de korte termijn. Het model bevat twee parameters die de biochemische karakteristieken beschrijven: de tijdconstante voor S(IV)-oxidatie en een parameter die de gevoeligheid van de fotosynthese voor S(IV) beschrijft.

De simulatieresultaten laten zien dat de plant extreem toxische concentraties in het blad kan voorkomen door: (i) de snelle oxidatie van S(IV) tot sulfaat, (ii) de relatief hoge weerstand voor SO2-opname en (iii) de stomataire sluiting die een gevolg is van een gereduceerde fotosynthese. S(IV)-concentraties in het blad en SO2-concentraties in de stomataire holten zijn kleiner dan 1% van de concentratie die zou ontstaan als deze mechanismen niet zouden werken. Bladdikte blijkt de gevoeligheid van planten voor SO2 in sterke mate te bepalen. De effecten van SO2 op de fotosynthese dienen te worden gerelateerd aan de opnamesnelheid per eenheid bladvolume, in plaats van bladoppervlak. Het model simuleert de reductie in fotosynthese gedurende een korte begassingsperiode en een herstelperiode nauwkeurig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alscher, R., Bower, J.L. & Zipfel, W., 1987. The basis for different sensitivities of photosynthesis to SO2 in two cultivars of pea. Journal of Experimental Botany 38: 99–108.

    Google Scholar 

  • Asada, K. & Kiso, K., 1973. Initiation of aerobic oxidation of sulphite by illuminated spinach chloroplasts. European Journal of Biochemistry 33: 253–257.

    Article  PubMed  Google Scholar 

  • Ashenden, T.W. & Mansfield, T.A., 1977. Influence of wind speed on the sensitivity of ryegrass to SO2. Journal of Experimental Botany 28: 729–735.

    Google Scholar 

  • Barton, J.R., McLaughlin, S.B. & McConathy, R.K., 1980. The effects of SO2 on components of leaf resistance to gas exchange. Environmental Pollution (series A) 21: 255–265.

    Article  Google Scholar 

  • Bell, C.J., 1982. A model of stomatal control. Photosynthetica 16: 486–495.

    Google Scholar 

  • Bell, J.N.B., Rutter, A.J. & Relton, J., 1979. Studies on the effects of low levels of sulphur dioxide on the growth ofLolium perenne L. New Phytologist 83: 627–643.

    Google Scholar 

  • Bennett, J.H. & Hill, A.C., 1973. Inhibition of apparent photosynthesis by air pollutants. Journal of Environmental Quality 2: 526–530.

    Google Scholar 

  • Black, V.J., 1982. Effects of sulphur dioxide on physiological processes in plants. In: Unsworth, M.H. & Ormrod, D.P. (Eds), Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, London, p. 67–91.

    Google Scholar 

  • Black, C.R. & Black, V.J., 1979. The effects of low concentrations of sulphur dioxide on stomatal conductance and epidermal cell survival in field bean (Vicia faba L.). Journal of Experimental Botany 30: 291–298.

    Google Scholar 

  • Black, V.J. & Unsworth, M.H., 1979a. Resistance analysis of sulphur dioxide fluxes toVicia faba. Nature 282: 68–69.

    Google Scholar 

  • Black, V.J. & Unsworth, M.H., 1979b. Effects of low concentrations of sulphur dioxide on net photosynthesis and dark respiration. Journal of Experimental Botany 30: 473–483.

    Google Scholar 

  • Black, V.J. & Unsworth, M.H., 1980. Stomatal responses to sulphur dioxide and vapour pressure deficit. Journal of Experimental Botany 31: 667–677.

    Google Scholar 

  • Cape, J.N., 1984. The importance of solution equilibria in studying the effects of sulphite in plants. Environmental Pollution (series A) 34: 259–274.

    Article  Google Scholar 

  • Carlson, R.W., 1983. The effect of SO2 on photosynthesis and leaf resistance at varying concentrations of CO2. Environmental Pollution (series A) 30: 309–321.

    Article  Google Scholar 

  • Darrall, N.M., 1986. The sensitivity of net photosynthesis in several plant species to short-term fumigation with sulphur dioxide. Journal of Experimental Botany 37: 1313–1322.

    Google Scholar 

  • Farquhar, G.D. & Sharkey, T.D., 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33: 317–345.

    Article  Google Scholar 

  • Gezelius, K. & Hållgren, J.-E., 1980 Effects of SO 2−3 on the activity of ribulose biphosphate carboxylase from seedlings ofPinus silvestris. Physiologia Plantarum 49: 354–358.

    Google Scholar 

  • Goudriaan, J. & Van Laar, H.H., 1978. Relations between leaf resistance, CO2-concentration and CO2-assimilation in maize, beans, lalang grass and sunflower. Photosynthetica 12: 241–249.

    Google Scholar 

  • Hållgren, J.-E., 1978. Physiological and biochemical effects of sulphur dioxide on plants. In: Nriagu, I.O. (Ed.), Sulphur in the environment, Part 2, p. 163–209.

  • Hållgren, J.-E., 1984. Photosynthetic gas exchange in leaves affected by air pollutants. In: Koziol, M.J. & Whatley, F.R. (Eds), Gaseous air pollutants and plant metabolism. Butterworth, London, p. 147–159.

    Google Scholar 

  • Hållgren, J.-E., Fredriksson, S., 1982. Emmission of hydrogen sulfide from sulphite from sulphur dioxide tumigated pine trees. Plant Physiology 70: 456–459.

    Google Scholar 

  • Jones, T. & Mansfield, T.A., 1982. Studies on dry matter partitioning and distribution of14C-labelled assimilates in plants ofPhleum pratense exposed to SO2 pollution. Environmental Pollution (series A) 28: 199–207.

    Article  Google Scholar 

  • Kercher, J.R., 1978. A model of leaf photosynthesis and the effects of simple gaseous sulphur compounds (H2S and SO2). URCL-52643. Laurence Livermore National Laboratory, Livermore. California, 37 pp.

    Google Scholar 

  • Khan, A.A. & Malhotra, S.S., 1982. Ribulose biphosphate carboxylase and glycolate oxidase from Jack pine: effects of sulphur dioxide fumigation. Phytochemistry 21: 2607–2612.

    Article  Google Scholar 

  • Kondo, N., Akiyama, Y., Fujiwara, M. & Sugahara, K., 1980. Sulphite oxidizing activities in plants. In: Studies on the effects of air pollutants on plants and mechanisms of phytotoxicity. Research Report of the National Institute for Environmental Studies 11: 127–136.

    Google Scholar 

  • Kropff, M.J., 1987. Physiological effects of sulphur dioxide. 1. The effect of SO2 on photosynthesis and stomatal regulation ofVicia faba L. Plant, Cell and Environment 10: 753–760.

    Google Scholar 

  • Kropff, M.J., 1989. Modelling short-term effects of sulphur dioxide. 2. Quantification of biochemical characteristics determining the effect of SO2 on photosynthesis. Netherlands Journal of Plant Pathology 95: 214–224.

    Google Scholar 

  • Laisk, A., Pfanz, H., Schramm, M.J. & Heber, U., 1988a. Sulphur-dioxide fluxes into different cellular compartments of leaves photosynthesizing in a polluted atmosphere. I. Computer analysis. Planta 173: 230–240.

    Article  Google Scholar 

  • Laisk, A. Pfanz, H. & Heber, U., 1988b. Sulphur-dioxide fluxes into different cellular compartments of leaves photosynthesizing in a polluted atmosphere. II. Consequences of SO2 uptake as revealed by computer analysis. Planta 173: 241–252.

    Article  Google Scholar 

  • Lorenc-Plucinska, G., 1986. Effect of sulphur dioxide on the partitioning of assimilates of Scots pine (Pinus sylvestris L.) seedlings of different susceptibility to this gas. European Journal of Plant Pathology 16: 266–273.

    Google Scholar 

  • Louwerse, W., 1980. Effects of CO2 concentration and irradiance on the stomatal behaviour of maize, barley and sunflower plants in the field. Plant, Cell and Environment 3: 391–398.

    Google Scholar 

  • McLaughlin, S.B., McConathy, R.K., Durick, D. & Mann, L.K., 1982. Effects of chronic air pollution stress on photosynthesis, carbon allocation and grwoth of white pines. Forest Science 28: 60–71.

    Google Scholar 

  • Majernik, O. & Mansfield, T.A., 1971. Effects of SO2 pollution on stomatal movements inVicia faba. Phytopathologische Zeitschrift 71: 123–128.

    Google Scholar 

  • Malhotra, S.S. & Khan, A.A., 1984. Biochemical and physiological impact of major pollutants. In: Treshow, M. (Ed.), Air pollution an plant life. John Wiley & Sons Ltd., p. 113–157.

  • Mansfield, T.A. & Freer-Smith, P.H., 1984. The role of stomata in resistance mechanisms. In: Koziol, M.J. & Whatley, F.R. (Eds), Gaseous air pollutants and plant metabolism. Butterworth, London, p. 131–146.

    Google Scholar 

  • Marques, I.A. & Anderson, L.E., 1986. Effects of arsenite, sulphite, and sulphate on photosynthetic carbon metabolism in isolated pea (Pisum sativum L., cv. Little Marvel) chloroplasts. Plant Physiology 82: 488–493.

    Google Scholar 

  • Miller, J.E. & Xerikos, P.B., 1979. Residence time of sulphite in SO2 ‘sensitive’ and ‘tolerant’ soybean cultivars. Environmental Pollution (series A) 18: 259–264.

    Google Scholar 

  • Monteith, J.L., 1973. Principles of environmental physics. Edward Arnold, London, 241 pp.

    Google Scholar 

  • Mooney, H.A., Küppers, M., Koch, G., Gorham, J., Chu, C. & Winner, W.E., 1988. Compensating effects to growth of carbon partitioning changes in response to SO2 induced photosynthetic reduction in radish. Oecologia 75: 502–506.

    Article  Google Scholar 

  • Morison, J.I.L., 1987. Intercellular CO2 concentrations and stomatal response to CO2. In: Zeiger, E.R., Farquhar, G.D. & Cowan, I.R. (Eds), Stomatal function. Stanford Univ. Press, Stanford California, 491 pp.

    Google Scholar 

  • Noyes, R.D., 1980. The comparative effects of sulphur dioxide on photosynthesis and translocation in bean. Physiological Plant Pathology 16: 73–79.

    Google Scholar 

  • Olszyk, D.M. & Tibbitts, T.W., 1981. Stomatal response and leaf injury ofPisum sativum L. with SO2 and O3 exposures. I. Influence of pollutant level and leaf maturity. Plant Physiology 67: 539–549.

    Google Scholar 

  • Parry, M.A.J. & Gutteridge, S., 1984. The effect of SO 2−3 and SO 2−4 ions on the reactions of ribulose biphosphate carboxylase. Journal of Experimental Botany 35: 157–168.

    Google Scholar 

  • Penning de Vries, F.W.T. & Van Laar, H.H., 1982. Simulation of plant growth and crop production. Simulation Monograph. Pudoc, Wageningen, 308 pp.

    Google Scholar 

  • Pfanz, H. & Heber, U., 1986. Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic gases. Plant Physiology 81: 597–602.

    Google Scholar 

  • Pfanz, H., Martinoia, E., Lange, O.L. & Heber, U., 1987. Flux of SO2 into leaf cells and cellular acidification by SO2. Plant Physiology 85: 928–933.

    Google Scholar 

  • Raven, J.A., 1986. Biochemical disposal of excess H+ in growing plants. New Phytologist 104: 175–206.

    Google Scholar 

  • Rennenberg, H., 1984. The fate of excess sulphur in higher plants. Annual Review of Plant Physiology 35: 121–153.

    Article  Google Scholar 

  • Rennenberg, H. & Filner, P., 1982. Stimulation of H2S emission from pumpkin leaves by inhibition of glutathion synthesis. Plant Physiology 26: 1045–1055.

    Google Scholar 

  • Roberts, J.K.M., Ray, P.M., Wade-Jardetzky, N. & Jardetzky, O., 1981. Extent of intracellular pH changes during H+ extrusion by maize root tip cells. Planta 152: 74–78.

    Article  Google Scholar 

  • Rothermel, B. & Alscher, R., 1985. A light-enhanced metabolism of sulphite in cells ofCucumis sativus L. cotyledons. Planta 166: 105–110.

    Article  Google Scholar 

  • Sakaki, T. & Kondo, N., 1985. Inhibition of photosynthesis by sulphite in mesophyll protoplasts isolated fromVicia faba L. in relation to intracellular sulphite accumulation. Plant and Cell Physiology 26: 1045–1055.

    Google Scholar 

  • Saxe, H., 1983. Long-term effects of low levels of SO2 on bean plants (Phaseolus vulgaris). I. Immission-response pattern of net photosynthesis and transpiration during life-long, continuous measurements. Physiologia Plantarum 57: 101–107.

    Google Scholar 

  • Smith, F.A. & Raven, J.A., 1979. Intracellular pH and its regulation. Annual Review of Plant Physiology 30: 289–311.

    Article  Google Scholar 

  • Sprügel, D.G., Miller, J.E., Muller, R.M. Smith, H.J. & Xerikos, P.B., 1980. Sulphur dioxide effects on the yield and seed quality in field grown soybeans. Phytopathology 70: 1129–1133.

    Google Scholar 

  • Teh, K.H. & Swanson, C., 1982. Sulphur dioxide inhibition of translocation in bean plants. Plant Physiology 69: 88–92.

    Google Scholar 

  • Temple, P.J., Fa Cao Hong & Taylor, O.C., 1985. Effects of SO2 on stomatal conductance and growth ofPhaseolus vulgaris. Environmental Pollution (series A) 37: 267–279.

    Article  Google Scholar 

  • Unsworth, M.H. & Ormrod, D.P., 1982. Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, London, 532 pp.

    Google Scholar 

  • Unsworth, M.H., Biscoe, P.V. & Black, V., 1976. Analysis of gas exchange between plants and polluted atmospheres. In: Mansfield, T.A. (Ed.), Effects of air pollutants on plants. Cambridge University Press, London, p. 7–16.

    Google Scholar 

  • Winner, W.E., Mooney, H.A. & Goldstein, R.A., 1985. Sulphur dioxide and vegetation. Physiology, Ecology and Policy issues. Stanford University press, Stanford, California, 593 pp.

    Google Scholar 

  • Wit, C.T. de et al., 1978. Simulation of assimilation, respiration and transpiration of crops. Simulation Monographs. Pudoc, Wageningen. 140 pp.

    Google Scholar 

  • Wong, S.C., Cowan, I.R. & Farquhar, G.D., 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282: 424–426.

    Google Scholar 

  • Ziegler, I., 1975. The effect of SO2 pollution on plant metabolism. Residue review 56: 79–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kropff, M.J. Modelling short-term effects of sulphur dioxide. 1. A model for the flux of SO2 into leaves and effects on leaf photosynthesis. Netherlands Journal of Plant Pathology 95, 195–213 (1989). https://doi.org/10.1007/BF01977806

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01977806

Additional keywords

Navigation