Skip to main content
Log in

Metabolic engineering of plant secondary products

  • Papers
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Plants interact with their environment by producing a diverse array of secondary metabolites. Many of these compounds are valued for their medicinal, industrial or agricultural properties. Other secondary products are toxic or otherwise undesirable and can reduce the commercial value of crops. Gene transfer technology offers new opportunities to modify directly plant secondary product synthesis through metabolic engineering. This article reviews some of the strategies which have been used to increase or decrease the synthesis of specific plant metabolites, as well as methods for expanding the biosynthetic capabilities of individual species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, J.E. (1991) Toward a science of metabolic engineering.Science 252, 1668–1675.

    Google Scholar 

  • Burnett, R.J., Maldonado-Mendoza, I.E., McKnight, T.D. and Nessler, C.L. (1993) Expression of a 3-hydroxy-3-methylglutaryl coenzyme A reductase gene fromCamptotheca acuminata is differentially regulated by wounding and methyl jasmonate.Plant Physiol. 103, 41–8.

    Google Scholar 

  • Chappell, J., Proulx, J., Wolf, F., Cuellar, R.E. and Saunders, C. (1991) Is HMG-CoA reductase a rate limiting step for isoprenoid metabolism?Plant Physiol. 96, 127.

    Google Scholar 

  • DeScenzo, R.A. and Minocha, S.C. (1993) Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA.Plant Mol. Biol. 22, 113–27.

    Google Scholar 

  • Dixon, R.A. and Lamb, C.J. (1990) Molecular communication in plant: microbial pathogen interactions.Annu. Rev. Pl. Physiol. Pl. Mol. Biol. 41, 339–67.

    Google Scholar 

  • Hain, R., Bieseler, B., Kindl, H., Vornam, B., Wiese, W., Schröder, G. and Stöcker, R.H. (1990) Expression of a stilbene synthase gene inNicotiana tabacum results in synthesis of the phytoalexin resveratrol.Pl. Mol. Biol. 15, 325–35.

    Google Scholar 

  • Hain, R., Reif, H.J., Krause, E., Langebratels, R., Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreirer, P.H., Stöcker, R.H. and Stenzel, K. (1993) Disease resistance results from foreign phytoalexin expression in a novel plant.Nature 361, 153–6.

    Google Scholar 

  • Hamill, J.D., Parr, A.J., Rhodes, M.J.C., Robins, R.J. and Walton, N.J. (1987) New routes to plant secondary products.Bio/Technology 5, 800–4.

    Google Scholar 

  • Hamill, J.D., Robins, R.J., Parr, A.J., Evans, D.M., Furze, J.M. and Rhodes, M.J.C. (1990) Over-expressing a yeast ornithine decarboxylase gene in transgenic roots ofNicotiana rustica can lead to enhanced nicotine accumulation.Pl. Mol. Biol. 15, 27–38.

    Google Scholar 

  • Herminghaus, S., Schreier, P.H., McCarthy, J.E.G., Landsmann, J., Botterman, J. and Berlin, J. (1991) Expression of a bacterial lysine decarboxylase gene and transport of the protein into chloroplasts of transgenic tobacco.Pl. Mol. Biol. 17, 475–86.

    Google Scholar 

  • Hohn, T.M. and Ohlrogge, J.B. (1991) Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco.Plant Physiol. 97, 460–2.

    Google Scholar 

  • Kawalleck, P., Keller, H., Hahlbrock, K., Scheel, D. and Somssich, I.E. (1993) A pathogen-responsive gene of parsley encodes tyrosine decarboxylase.J. Biol. Chem. 268, 2189–94.

    Google Scholar 

  • Krol, A.R. van der, Lenting, P.E., Veenstra, J., Meer, I.M. van der, Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation.Nature 333, 866–869.

    Google Scholar 

  • Krol, A.R. van der, Mur, L.A., Beld, M., Mol, J.N.M. and Stuitje, A.R. (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression.Pl. Cell 2, 291–9.

    Google Scholar 

  • Lagrimini, L.M., Vaughn, J., Erb, W.A. and Miller, S.A. (1993) Peroxidase overproduction in tomato: Wound-induced polyphenol deposition and disease resistance.HortScience 28, 218–21.

    Google Scholar 

  • Lloyd, A.M., Walbot, V. and Davis, R.W. (1992)Arabidopsis andNicotiana anthocyanin production activated by maize regulatorsR andC1.Science 258, 1773–5.

    Google Scholar 

  • Maldonado-Mendoza, I.E., Burnett, R.J. and Nessler, C.L. (1992) Nucleotide sequence of a cDNA encoding 3-hydroxy-3-methylglutaryl-CoA reductase fromCatharanthus roseus. Plant Physiol. 100, 1613–4.

    Google Scholar 

  • McKnight, T.D., Bergey, D.R., Burnett, R.J. and Nessler, C.L. (1991) Expression of enzymatically-active and correctlytargeted strictosidine synthase in transgenic tobacco plants.Planta 18, 148–52.

    Google Scholar 

  • Meijer, A.H., Souer, E., Verpoorte, R. and Hoge, J.H.C. (1993) Isolation of cytochrome P-450 cDNA clones from the higher plantCatharanthus roseus by a PCR strategy.Pl. Mol. Biol. 22, 379–83.

    Google Scholar 

  • Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H. (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene.Nature 330, 677–8.

    Google Scholar 

  • Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genesin trans.Plant Cell 2, 279–89.

    Google Scholar 

  • Noé, W., Mollenschott, C. and Berlin, J. (1984) Tryptophan decarboxylase fromCatharanthus roseus cell suspension cultures: Purification, molecular and kinetic data of the homogenous protein.Pl. Mol. Biol. 3, 281–288.

    Google Scholar 

  • Oakes, J.V., Shewmaker, C.K. and Stalker, D.M. (1991) Production of cyclodextrins, a novel carbohydrate, in the tubers of transgenic potato plants,Bio-Technology 9, 982–6.

    Google Scholar 

  • Poirier, Y., Dennis, D.E., Klomparens, K. and Somerville, C. (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants.Science 256, 520–2.

    Google Scholar 

  • Saito, K., Yamazaki, M. and Murakoshi, I. (1992) Transgenic medicinal plants:Agrobacterium-mediated foreign gene transfer and production of secondary metabolites.J. Nat. Prod. 55, 149–62.

    Google Scholar 

  • Songstad, D.D., De Luca, V., Brisson, N., Kurz, W.G.W. and Nessler, C.L. (1990) High levels of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase.Plant Physiol. 94, 1410–3.

    Google Scholar 

  • Songstad, D.D., Kurz, W.G.W. and Nessler, C.L. (1991) Tyramine accumulation inNicotiana tabacum transformed with a chimeric tryptophan decarboxylase gene.Phytochemistry 30, 3245–6.

    Google Scholar 

  • Stark, D.M., Timmerman, K.P., Barry, G.F., Priess, J. and Kishore, G.M. (1992) Regulation of the amount of starch in plant tissues by glucose pyrophosphorylase.Science 258, 287–92.

    Google Scholar 

  • Steck, W. (1992)From rapeseed to canola: The billion dollar success story. National Research Council of Canada Publications, NRCC 33537, Ottawa, Canada.

    Google Scholar 

  • Stephanopolulos, G. and Vallino, J.J. (1991) Network rigidity and metabolic engineering in metabolite overproduction.Science 252, 1675–81.

    Google Scholar 

  • Voelker, T.A., Worrell, A.C., Anderson, L., Bleibaum, J., Fan, C., Hawkins, D.J., Radke, S.E. and Davies, H.M. (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants.Science 257, 72–4.

    Google Scholar 

  • Yun, D.-J., Hashimoto, T. and Yamada, Y. (1992) Metabolic engineering of medicinal plants: transgenicAtropa belladonna with an improved alkaloid composition.Proc. Natl Acad. Sci. USA 89, 11799–803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nessler, C.L. Metabolic engineering of plant secondary products. Transgenic Research 3, 109–115 (1994). https://doi.org/10.1007/BF01974088

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01974088

Keywords

Navigation