Skip to main content
Log in

Insect-resistant chrysanthemum calluses by introduction of aBacillus thuringiensis crystal protein gene

  • Papers
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

A 3′-end truncated crystal protein gene, derived fromBacillus thuringiensis (Bt) subsp.aizawai 7.21, encoding the toxic fragment of the insecticidal proteincryIA(b), was constructed. The gene was inserted into a transformation vector, also carrying the neomycin phosphotransferase II (nptII) gene and the β-glucuronidase (gus) gene, and introduced in the oncogenicAgrobacterium tumerfaciens strain A281, harbouring the Ti-plasmid pTiBO542. The recombinantAgrobacterium strain was used to transform leaf explants of chrysanthemum (Dendranthema grandiflora) cultivar Parliament. The resulting tumours were kanamycin-resistant, exhibited β-glucuronidase activity and produced agropine and mannopine. In most tumours, all simultaneously transferred genes were expressed, owing to selection for the presence of both T-DNAs, but no correlation was found between the level of expression of the various genes. A bioassay was developed, in which larvae were fed with tumorous chrysanthemum tissue, in order to detect the effect of the transferred toxin gene on larval development. Using this bioassay with second instar larvae ofHeliothis virescens (tobacco budworm), 17 tumour lines were tested. Several of these lines proved to be strongly inhibitory to larval growth. These results indicate thatBt-based insect resistance might be used as a tool in reducing the amount of pesticides used in chrysanthemum culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adang, M.J., Staver, M.J., Rocheleau, T.A., Leighton, J., Barker, R.F. and Thompson, D.V. (1985) Characterized full-length and truncated plasmid clones of the crystal protein ofBacillus thuringiensis subsp.kurstaki HD-73 and their toxicity toManduca sexta.Gene 36, 289–300.

    Article  PubMed  Google Scholar 

  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proten-dye binding.Anal. Biochem. 72, 248–54.

    PubMed  Google Scholar 

  • Brewer, G.J. (1991) Resistance toBacillus thuringiensis subsp.kurstaki in the sunflower moth (Lepidoptera: Pyralidae)Environm.Entomol. 20, 316–22.

    Google Scholar 

  • Dons, J.J.M., Mollema, C., Stiekema, W.J. and Visser, L. (1991) Routes to the development of disease resistant ornamentals. In Harding, J., Mol, J., Sing, F. eds.,Genetics and Breeding of Ornamental Species, pp. 387–417. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Ferré, J., Real, M.D., Van Rie, J., Janssens, S. and Peferoen, M. (1991) Resistance to theBacillus thuringiensis bioinsecticide in a field population ofPlutella xylostella is due to a change in a midgut membrane receptor.Proc. Natl Acad. Sci. USA 88, 5119–23.

    PubMed  Google Scholar 

  • Fischhoff, D.A., Bowdish, K.S., Perlak, F.J., Marrone, P.G., McCormick, S.M., Niedermeyer, J.G., Dean, D.A., Kusano-Kretzmer, K., Mayer, E.J., Rochester, D.E., Rogers, S.G. and Fraley, R.T. (1987) Insect tolerant transgenic tomato plants.Bio/Technology 5, 807–13.

    Article  Google Scholar 

  • Gould, F. and Anderson, A. (1991) Effects ofBacillus thuringiensis HD-73 delta-endotoxin on growth, behavior and fitness of susceptible and toxin-adapted strains ofHeliothis virescens (Lepidoptera: Noctuidae).Environm.Entomol. 20, 30–8.

    Google Scholar 

  • Gould, F., Martinez-Ramirez, A., Anderson, A., Ferré, J., Silva, F.J., and Moar, W.J. (1992) Broad spectrum resistance toBacillus thuringiensis toxins inHeliothis virescens.Proc. Natl Acad. Sci. USA 89, 7986–90.

    PubMed  Google Scholar 

  • Harpster, M.H., Townsend, J.A., Jones, J.D.G., Bedbrook, J. and Dunsmuir, P. (1988) Relative strengths of the 35S cauliflower mosaic virus, 1′, 2′ and nopaline synthase promoters in transformed tobacco, sugarbeet and oilseed rape callus tissue.Mol. Gen. Genet. 212, 182–90.

    Article  PubMed  Google Scholar 

  • Hill, D.S. (1987)Agricultural Insect Pests of Temperate Regions and Their Control, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Höfte, H., Buyssens, S., Vaeck, M. and Leemans, J. (1988) Fusion proteins with both insecticidal and neomycin phosphotransferase II activity.FEBS Let. 226, 364–370.

    Article  Google Scholar 

  • Höfte, H. and Whitely, H.R. (1989) Insecticidal crystal proteins ofBacillus thuringiensis.Microbiol. Rev. 53, 242–255.

    PubMed  Google Scholar 

  • Honée, G., Vriezen, W. and Visser, B. (1990) A translation fusion product of two different insecticidal crystal protein genes ofBacillus thuringiensis exhibits an enlarged insecticidal spectrum.Appl. Environ. Microbiol. 56, 823–5.

    Google Scholar 

  • Hood, E.E., Helmer, G.C., Fraley, R.T. and Chilton, M.D. (1986) The hypervirulence region ofAgrobacterium tumefaciences A281 is encoded in a region of pTiBO542 outside of T-DNA.J. Bacteriol 168, 1291–301.

    PubMed  Google Scholar 

  • Jefferson, R.A. (1987) Assaying chimeric genes in plants: thegus gene fusion system.Pl. Mol. Biol. Rep. 5, 387–405.

    Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.EMBO J. 6, 3901–7.

    PubMed  Google Scholar 

  • Koncz, C., Mayerhofer, R., Koncz-Kahlman, Z., Nawrath, C., Reiss, B., Redei, G.P. and Schell, J. (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging inArabidopsis thaliana.EMBO J. 9, 1337–46.

    PubMed  Google Scholar 

  • Langridge, W.H.R., Fitzgerald, K.J., Koncz, C., Schell, J. and Czalay, A.A. (1989) Dual promoter ofAgrobacterium tumerfaciens auxin synthesis genes is regulated by plant growth hormones.Proc. Natl Acad. Sci. USA 86, 3219–23.

    Google Scholar 

  • McCown, B.H., McCabe, D.E., Russel, D.R., Robison, D.J., Barton, K.A., and Raffa, K.F. (1990) Stable transformation ofPopulus and incorporation of pest resistance by electric discharge particle acceleration.Pl. Cell Rep. 9, 590–4.

    Google Scholar 

  • McDonnell, R.E., Clark, R.D., Smith, W.A. and Hinchee, M.A. (1987) A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissues.Pl. Mol. Biol. Rep. 5, 380–86.

    Google Scholar 

  • McGaughy, W.H. and Johnson, D.E. (1987) Toxicity of different serotypes and toxins ofBacillus thuringiensis to resistant and susceptible Indianmeal moths (Lepidoptera: Pyralidae).J. Econ. Entomol. 80, 1122–6.

    Google Scholar 

  • McGaughy, W.H. and Beeman, R.W. (1988) Resistance toBacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera: Pyralidae).J. Econ. Entomol. 81, 28–33.

    Google Scholar 

  • Mullis, K.B., Faloona, F.A., Scharf, S.J., Saiki, R.K., Horn, G.T. and Ehrlich, H.A. (1986) Specific enzymatic amplification of DNAin vitro: the polymerase chain reaction.Cold Spring Harbor Symp. Quant. Biol. 51, 263–73.

    PubMed  Google Scholar 

  • Murashige, T. and Skooge, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures.Physiol. Plantarum 15, 473–97.

    Google Scholar 

  • Perlak, F.J., Deaton, R.W., Armstrong, T.A., Fuchs, R.L., Sims, S.R., Greenplate, J.T. and Fischhoff, D.A. (1990) Insect resistant cotton plants.Bio/Technology 8, 939–43.

    Article  PubMed  Google Scholar 

  • Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S.L. and Fischhoff, D.A. (1991) Modification of the coding sequence enhances plant expression of insect control protein genes.Proc. Natl Acad. Sci. USA 88, 3324–8.

    PubMed  Google Scholar 

  • Petit, A., David, C., Dahl, G.A., Ellis, J.G., Guyon, P., Casse-Delbart, F. and Tempé, J. (1983) Further extension of the opine concept; plasmids inAgrobacterium rhizogenes cooperate for opine degradation.Mol. Gen. Genet. 190, 204–14.

    Article  Google Scholar 

  • Platt, S.G. and Yang, N.S. (1987) Dot assay for neomycin phosphotransferase activity in crude cell extracts.Anal. Biochem. 162, 529–35.

    Article  PubMed  Google Scholar 

  • Rogers, S.G., Klee, H., Horsch, R.B. and Fraley, R.T. (1988). Use of cointegrating Ti-plasmid vectors. In: Gelvin, S.R. and Schilperoort, R.A. eds.,Plant Molecular Biology Manual A2: 1–12. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Rossiter, M., Yendol, W.G. and Dubois, N.R. (1990) Resistance toBacillus thuringiensis in gypsy moth (Lepidoptera: Lymantriidae): genetic and environmental causes.J. Econ. Entomol. 83, 2211–8.

    Google Scholar 

  • Saito, K., Yamazaki, M., Kaneko, H., Murakoshi, I., Fukuda, Y. and Van Montagu, M. (1991) Tissue-specific and stress enhancing expression of the TR promoter for mannopine synthase in transgenic medicinal plants.Planta 184, 40–6.

    Article  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989)Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Stone, T.B., Sims, S.R. and Marrone, P.G. (1989) Selection of tobacco budworm for resistance to a genetically engineeredPseudomonas fluorescens containing the σ-endotoxin ofBacillus thuringiensis subsp.kurstaki.J. Invert. Pathol. 53, 228–34.

    Article  Google Scholar 

  • Sutton, D.W., Havstad, P.K. and Kemp, J.D. (1992) SyntheticcryIIIA gene fromBacillus thuringiensis improved for high expression in plants.Transgen. Res. 1, 228–36.

    Google Scholar 

  • Tabashnik, B.E., Finson, N. and Johnson, M.W. (1991) Managing resistance toBacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae).J. Econ. Entomol. 84, 49–55.

    Google Scholar 

  • Töpfer, R., Matzeit, V., Groneborn, B., Schell, J. and Steinbiss, H.H. (1987) A set of plant expression vectors for transcriptional and translational fusions.Nucl. Acids Res. 15, 5890.

    PubMed  Google Scholar 

  • Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M. and Leemans, J. (1987) Transgenic plants protected from insect attack.Nature 328, 33–7.

    Article  Google Scholar 

  • Van Wordragen, M.F., De Jong, J., Huitema, J.B.M. and Dons, J.J.M. (1991) Genetic transformation of chrysanthenum using wild-typeAgrobacterium strains: strain and cultivar specificity.Pl. Cell Rep. 9, 505–8.

    Google Scholar 

  • Van Wordragen, M.F., De Jong, J., Schornagel, M.J. and Dons, J.J.M. (1992) Rapid screening for host-bacterium interactions inAgrobacterium-mediated gene transfer to chrysanthemum, by using the GUS-intron gene.Pl. Sci. 81, 207–214.

    Article  Google Scholar 

  • Zambryski, P. (1988) Basic processes underlyingAgrobacterium-mediated DNA transfer to plant cells.Ann. Rev. Genet. 22, 1–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Wordragen, M.F., Honée, G. & Dons, H.J.M. Insect-resistant chrysanthemum calluses by introduction of aBacillus thuringiensis crystal protein gene. Transgenic Research 2, 170–180 (1993). https://doi.org/10.1007/BF01972611

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01972611

Keywords

Navigation