Skip to main content
Log in

Hypotensive activity of PAF-acether in rats

  • Platelets and Thrombosis
  • Published:
Agents and Actions Aims and scope Submit manuscript

Abstract

PAF-acether caused a dose-related decrease in blood pressure of conscious SHR rats (5–20 μg/kg i.p.) and anaesthetized normotensive rats (0.06–0.50 μg/kg i.v.). In anaesthetized normotensive rats, PAF-acether-induced hypotension was not associated with tachycardia and not modified by various pretreatments such as atropine, mepyramine, cimetidine, propranolol, sulpiride, ketoprofen (an inhibitor of prostaglandin cyclooxygenase) and teprotide. PAF-acether (0.5 μg/kg i.v.) reduced the pressor effect of norepinephrine but not that of angiotensine II.

In pithed rats, PAF-acether (0.12–0.50 μg/kg i,.v.) shifted the dose-response curve for norepinephrine-induced hypertension to the right in a parallel manner and did not reverse the inhibitory action of clonidine on cardiac nerve stimulation.

These results suggest that the hypotensive effect of PAF-acether in anaesthetized rats may be mediated by α-adrenergic blockade and PAF-acether looks like a powerful postsynaptic adrenoceptor blocking agent.

However,in vitro, up to 100 μg/l, PAF-acether did not modify the norepinephrine-induced contractions on non-vascular (vas deferens) and vascular (thoracic aorta) preparations of rats. Moreover, PAF-acether did not inhibitin vitro [3H]WB-4101 and [3H]p-aminoclonidine binding in rat brain preparations.

This absence ofin vitro activity suggest that thein vivo adrenolytic activity of PAF-acether is in fact an indirect one either via a directly active metabolite or possibly through the release of an unidentified endogenous adrenolytic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.J. Cusack,Platelet-activating factor, Nature, London285, 193 (1980).

    Google Scholar 

  2. M.L. Blank, F. Snyder, L.W. Byers, B. Brooks andE.E. Muirhead,Antihypertensive activity of an alkyl ether analog of phosphatidylcholine, Biochem. biophys. Res. Commun.90, 1194–1200 (1979).

    PubMed  Google Scholar 

  3. R.L. Prewitt, B.E. Leach, L.W. Byers, B. Brooks, W.E.M. Lands andE.E. Muirhead,Antihypertensive polar renomedullary lipid, a semisynthetic vasodilator, Hypertension1, 299–308 (1979).

    PubMed  Google Scholar 

  4. E.E. Muirhead,Antihypertensive functions of the kidney, Hypertension2, 444–464 (1980).

    PubMed  Google Scholar 

  5. K.A. Smith, R.L. Prewitt, L.W. Byers andE.E. Muirhead,Analogs of phosphatidylcholine: α-Adrenergic antagonists from the renal medulla, Hypertension3, 460–470 (1981).

    PubMed  Google Scholar 

  6. J.J. Godfroid, F. Heymans, E. Michel, C. Redeuilh, E. Steiner andJ. Benveniste,Platelet activating factor (PAF-acether): Total synthesis of 1-O-octadecyl 2-O-acetyl sn-glycero-3-phosphoryl choline, FEBS Letters116, 161–164 (1980).

    Article  PubMed  Google Scholar 

  7. R.E. Shipley andJ.H. Tilden,A pithed rat preparation suitable for assaying pressor substances, Proc. Soc. exp. Biol. Med.64, 453–455 (1947).

    Google Scholar 

  8. G.M. Drew,Effects of α-adrenoceptor agonists and antagonists on pre- and postsynaptically located α-adrenoceptors, Eur. J. Pharmac.36, 313–320 (1976).

    Article  Google Scholar 

  9. P. Polster andM. de Claviere,Calcium-antagonistic effects of L 9394 on vascular and ventricular muscle, Biochem. Pharmac.30, 897–901 (1981).

    Google Scholar 

  10. D.C. U'Prichard, D.A. Greenberg andS.H. Snyder,Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors, Mol. Pharmacol.13, 454–473 (1977).

    PubMed  Google Scholar 

  11. B.R. Rouot andS.H. Snyder, [3H]Para-amino-clonidine: A novel ligand which binds with high affinity to α-adrenergic receptors,Life Sci. 25, 769–774 (1979).

    Article  PubMed  Google Scholar 

  12. T. Kubota, H. Komatsu, H. Kawamoto andT. Yamada,Studies on the effects of anti-inflammatory action of benzoyl-hydrotropic acid (ketoprofen) and other drugs, with special reference to prostaglandin synthesis, Arch. int. Pharmacodyn. Thér.237, 169–176 (1979).

    Google Scholar 

  13. K. Starke andJ.R. Docherty,Recent developments in α-adrenoceptor research, J. Cardiovas. Pharmacol.2 Suppl. 3), S269-S286 (1980).

    Google Scholar 

  14. I. Cavero andA.G. Roach,The pharmacology of prazosin, a novel antihypertensive agent, Life Sci.27, 1525–1540 (1980).

    Article  PubMed  Google Scholar 

  15. F. Huguet, K. Biziere, M. Breteau andG. Narcisse,Effects de la nicergoline sur divers neurorécepteurs centraux: Profil neurochimique, J. Pharmacol. (Paris)11, 257–267 (1980).

    Google Scholar 

  16. C.G. Caillard, S. Mondot, J.C. Blanchard andL. Julou,Etude de l'activité alpha adrénolytique de la nicergoline chez le rat, en comparaison avec celle de la prazosine, J. Pharmacol. (Paris)12, 101–102 (1981).

    Google Scholar 

  17. Y. Cheng andW.H. Prusoff,Relationship between the inhibition constant (Ki)and the concentration of inhibitor which causes 50 percent inhibition (I50)of an enzymatic reaction, Biochem. Pharmac.22, 3099–3108 (1973).

    Article  Google Scholar 

  18. B.B. Vargaftig, J. Lefort, M. Chignard andJ. Benveniste,Platelet-activating factor induces a platelet-dependent bronchoconstriction unrelated to the formation of prostaglandin derivatives, Eur. J. Pharmac.65, 185–192 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caillard, C.G., Mondot, S., Zundel, J.L. et al. Hypotensive activity of PAF-acether in rats. Agents and Actions 12, 725–730 (1982). https://doi.org/10.1007/BF01965093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01965093

Keywords

Navigation