We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

A modern neurobiological concept of vigilance

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • Published:
Experientia Aims and scope Submit manuscript

In 1924/25, W.R. Hess in one of his easily most cogent and far-reaching papers — a programmatic treatise on the interrelation between psychic and vegetative functions — hypothesized that the reactivity of the cerebral cortical networks, and, for that matter, of all central nervous networks involved in the organization of (animalic) sensory-motor as well as psychic activities, is under the double — antagonistic — controlling influence of vegetative information channels arising in the brain stem. With this hypothesis Hess anticipated practically everything which later experimentors, through ‘dry’ and ‘wet’ — biophysical, biochemical and pharmacological — methodology would prove to constitute the various ascending regulatory systems, including the now modern neurotransmitter channels, that impinge on what is usually referred to as ‘higher centers’. And still more importantly, with his notion of an ascending vegetative control, Hess provided the very basic neurophysiological foundation necessary for the eventual development functionally well-definedconcept of vigilance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anlezark, G.M., Crow, T.J., and Greenway, A.P., Impaired learning and decreased cortical norepinephrine after bilateral locus coeruleus lesions. Science181 (1973) 682–684.

    Article  CAS  PubMed  Google Scholar 

  2. Arduini, A., Mancia, M., and Mechelse, K., Slow potential changes in the cerebral cortex by sensory and reticular stimulation. Archs ital. Biol.95 (1957) 127–138.

    Google Scholar 

  3. Benkert, O., and Köhler, B., Intrahypothalamic and intrastriatal dopamine and norepinephrine injections in relation to motor hyperactivity in rats. Psychopharmacologia, Berl.24 (1972) 318–325.

    Article  CAS  Google Scholar 

  4. Bente, D., Vigilanz, dissoziative Vigilanzverschiebung und Insuffizienz des Vigilitätstonus, in: Begleitwirkungen und Misserfolge der psychiatrischen Pharmakotherapie, pp. 13–28. Eds H. Kranz and K. Heinrich. Thieme, Stuttgart 1964.

    Google Scholar 

  5. Bente, D., Vigilanz: Psychophysiologische Aspekte, in: Verhandlungen der Deutschen Gesellschaft für Innere Medizin, vol. 83, pp. 945–952. J.F. Bergmann, München 1977.

    Chapter  Google Scholar 

  6. Bremer, F., and Stoupel, N., Facilitation et inhibition des potentials evoqués corticaux dans l'éveil cerébral. Archs int. Physiol.67 (1959) 240–275.

    CAS  Google Scholar 

  7. Chu, N.-S., and Bloom, F.E., Activity patterns of catecholamine containing pontine neurons in the dorso-lateral tegmentum of unrestrained cats. J. Neurobiol.5 (1974) 527–544.

    Article  CAS  PubMed  Google Scholar 

  8. Cordeau, J.P., and Mancia, M., Evidence for the existence of an electroencephalographic synchronization mechanism originating in the lower brain stem. Electroenceph. clin. Neurophysiol.11 (1959) 551–564.

    Article  CAS  PubMed  Google Scholar 

  9. Desmedt, J.E., and Debecker, J., Wave form and neural mechanism of the decision P350 elicited without pre-stimulus CNV or readiness potential in random sequences of near threshold auditory clicks and finger stimuli. Electroenceph. clin. Neurophysiol.47 (1979) 648–670.

    Article  CAS  PubMed  Google Scholar 

  10. Deutsch, J.A., and Rocklin, K.W., Amnesia induced by scopolamine and its temporal variations. Nature, Lond.216 (1967) 89–90.

    Article  CAS  PubMed  Google Scholar 

  11. De Wied, D., Effects of peptide hormones on behavior, in: Frontiers in neuroendocrinology, pp. 97–140. Eds W.F. Ganong and L. Martini. Oxford University Press, Oxford 1969.

    Google Scholar 

  12. Dimond, S., and Lazarus, J., The problem of vigilance in animal life. Brain Behav. Evol.9 (1974) 60–79.

    Article  CAS  PubMed  Google Scholar 

  13. Domino, E.F., and Yamamoto, K., Nicotine: effect on the sleep cycle of the cat. Science150 (1965) 637–638.

    Article  CAS  PubMed  Google Scholar 

  14. Fuster, J.M., Effects of stimulation of brain stem on tachistoscopic perception. Science127 (1958) 150.

    Article  CAS  PubMed  Google Scholar 

  15. Gadea-Ciria, M., Stadler, H., Lloyd, K.G., and Bartholini, G., Acetylcholine release within the cat striatum during the sleep-wakefulness cycle. Nature243 (1973) 518–519.

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Austt, E., Influence of the states of awareness upon sensory evoked potentials. Electroenceph. clin. Neurophysiol., suppl.24 (1963) 76–89.

    Google Scholar 

  17. Geyer, M.A., Segal, D.S., and Mandell, A.J., Effect of intraventricular infusion of dopamine and norepinephrine on motor activity. Physiol. Behav.8 (1972) 653–658.

    Article  CAS  PubMed  Google Scholar 

  18. Gilden, L., Vaughan, H.G., and Costa, L.D., Summated human EEG-potentials with voluntary movements. Electroenceph. clin. Neurophysiol.20 (1966) 433–438.

    Article  CAS  PubMed  Google Scholar 

  19. Haider, M., Spong, P., and Lindsley, D., Attention, vigilance, and cortical evoked-potentials in humans. Science145 (1964) 180–182.

    Article  CAS  PubMed  Google Scholar 

  20. Haranath, P.S.R.K., and Venkatakrishna-Bhatt, H., Release of acetylcholine from perfused cerebral ventricles in unanesthetized dogs during waking and sleep. Jap. J. Physiol.23 (1973) 241–250.

    Article  CAS  Google Scholar 

  21. Hazra, J., Effect of hemicholinium-3 on slow wave and paradoxical sleep of cat. Eur. J. Pharmac.11 (1970) 395–397.

    Article  CAS  Google Scholar 

  22. Head, H., The conception of nervous and mental energy. II. Vigilance; a physiological state of the nervous system. Br. J. Psychol.14 (1923) 125–147.

    Google Scholar 

  23. Hearst, E., and Whalen, R., Facilitating effects of d-amphetamine on discriminated-avoidance performance. J. comp. Physiol. Psychol.56 (1963) 124–128.

    Article  Google Scholar 

  24. Hernández-Péon, R., Scherrer, H., and Jouvet, M., Modification of electrical activity in cochlear nucleus during ‘attention’ in unanesthetized cats. Science123 (1956) 331–332.

    Article  PubMed  Google Scholar 

  25. Hess, W.R., Über die Wechselbeziehungen zwischen psychischen und vegetativen Funktionen. Schweiz. Arch. Neurol. Psychol.15 (1924) 260–277;16 (1925) 36–55 and 285–306.

    Google Scholar 

  26. Hess, W.R., Das Schlafsyndrom als Folge dienzephaler Reizung. Helv. physiol. pharmac. Acta2 (1944) 305–344.

    Google Scholar 

  27. Jasper, H.H., and Tessier, J., Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science172 (1971) 601–602.

    Article  CAS  PubMed  Google Scholar 

  28. Jerison, H., and Pickett, R.M., Vigilance: a review and re-evaluation. Hum. Factors5 (1963) 211–238.

    Article  CAS  PubMed  Google Scholar 

  29. Jones, B., The double role of catecholamines in waking and paradoxical sleep: A neuropharmacological problem. Ph.D. thesis, University of Delaware, Delaware 1970.

    Google Scholar 

  30. Jones, B.E., Bobillier, P., Pin, C., and Jouvet, M., The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res.58 (1973) 157–177.

    Article  CAS  PubMed  Google Scholar 

  31. Jones, B.E., Harper, S.T., and Halaris, A.E., Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Res.124 (1977) 473–496.

    Article  CAS  PubMed  Google Scholar 

  32. Jouvet, M., The rhombencephalic phase of sleep, in: Progress in Brain Research, vol. 1, pp. 407–424. Eds G. Moruzzi, A. Fessard, and H.H. Jasper. Elsevier, Amsterdam 1963.

    Google Scholar 

  33. Jouvet, M., Mechanisms of the states of sleep: a neuropharmacological approach, in: Sleep and altered states of consciousness, pp. 86–126. Eds S.S. Kety, E.V. Evarts and H.L. Williams, Williams and Wilkins Co., Baltimore 1967.

    Google Scholar 

  34. Kafi, S., and Gaillard, J.-M., Pre- and postsynaptic effect of yohimbine on rat paradoxical sleep, in: Sleep 1980, Proc. 5th Eur. Congr. Sleep Res., pp. 292–293. Ed. W.P. Koella. Karger, Basel 1981.

    Google Scholar 

  35. Karczmar, A., Longo, V.G., and Scotti de Carolis, A., A pharmacological model of paradoxical sleep: the role of cholinergic and monoamine systems. Physiol. Behav.5 (1970) 175–182.

    Article  CAS  PubMed  Google Scholar 

  36. Kelley, A., Stinus, L., and Iversen, S.D., Interaction between D-ala-metenkephaline, Aio-dopaminergic neurons, and spontaneous behavior in the rat. Behav. Brain Res.1 (1980) 3–24.

    Article  CAS  PubMed  Google Scholar 

  37. Kemp, I.R., and Kaada, B.R., The relation of hippocampal theta activity to arousal, attentive behavior and somato-motor movements in unrestrained cats. Brain Res.95 (1975) 323–342.

    Article  CAS  PubMed  Google Scholar 

  38. King, C.D., and Jewett, R.E., The effects of α-methyltyrosine on sleep and brain norepinephrine in cats. J. Pharmac. exp. Ther.177 (1971) 188–194.

    CAS  Google Scholar 

  39. Kleinlogel, H., Scholtysik, G., and Sayers, A.C., Effects of clonidine and BS 100-141 on the EEG sleep pattern in rats. Eur. J. Pharmac.33 (1975) 159–163.

    Article  CAS  Google Scholar 

  40. Koella, W.P., Sleep — its nature and physiological organization. C.C. Thomas, Springfield, Ill. 1967.

    Google Scholar 

  41. Koella, W.P., Serotonin oder Somnotonin? Schweiz. med. Wschr.100 (1970) 357–364 and 424–430.

    CAS  PubMed  Google Scholar 

  42. Koella, W.P., Central effects of beta-adrenergic blocking agents: mode and mechanism of action, in: Therapeutic approach to the psyche via the beta-adrenergic system, pp. 11–29. Ed. P. Kielholz. Hans Huber, Bern 1978.

    Google Scholar 

  43. Koella, W.P., Vigilance — a concept and its neurophysiological and biochemical implications, in: Pharmacology of the states of alertness, pp. 171–178. Eds P. Passouant and I. Oswald. Pergamon Press, Oxford and New York 1979.

    Google Scholar 

  44. Koella, W.P., Neurotransmitters and sleep, in: Psychopharmacology of sleep, pp. 19–52. Ed. D. Wheatley. Raven Press, New York 1981.

    Google Scholar 

  45. Koella, W.P., Vigilanz — ihre Regulation und die Rolle der Neurotransmittersysteme, in: Hirnorganische Osychosyndrome im Alter. pp. 199–219. Eds D. Bente, H. Coper and S. Kanowski. Springer, Berlin, Heidelberg, New York 1982.

    Chapter  Google Scholar 

  46. Koella, W.P., Feldstein, A., and Czicman, J., The effect of para-chlorophenylalanine on the sleep of cats. Electroenceph. clin. Neurophysiol.25 (1968) 481–490.

    Article  CAS  PubMed  Google Scholar 

  47. Koella, W.P., and Ferry, A., Cortico-subcortical homeostasis in the cat's brain. Science142 (1963) 586–589.

    Article  CAS  PubMed  Google Scholar 

  48. Koella, W.P., and Gellhorn, E., The influence of diencephalic lesions upon the action of nociceptive impulses and hypercapnia on the electrical activity of the cat's brain. J. comp. Neurol.100 (1954) 243–255.

    Article  CAS  PubMed  Google Scholar 

  49. Kornhuber, H.H., and Deeke, L., Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch. ges. Physiol.284 (1965) 1–17.

    Article  CAS  Google Scholar 

  50. Kostowski, W., Giacalone, E., Garattini, S., and Valzelli, L., Electrical stimulation of midbrain raphé: biochemical, behavioral and bioelectrical effects. Eur. J. Pharmac.7 (1969) 170–175.

    Article  CAS  Google Scholar 

  51. Kovačević, R., and Radulovački, M., Monoamine changes in the brain of cats during slow-wave sleep. Science193 (1976) 1025–1027.

    Article  PubMed  Google Scholar 

  52. Krueger, J.M., Pappenheimer, J.R., and Karnovsky, M.L., The composition of sleep-promoting factor isolated from human urine. J. biol. Chem.257 (1982) 1664–1669.

    Article  CAS  PubMed  Google Scholar 

  53. Lairy-Bounes, G.C., and Dell, P., La régulation de l'activité corticale: aspects psychophysiologiques et psychopathologiques, in: Conditionnement et réactivité en électroencéphalographie. Eds H. Fischgold and H. Gastaut. Electroenceph. clin. Neurophysiol., suppl.6 (1957) 341–390.

  54. Lendrem, D.W., Sleeping and Vigilance in Birds. 6th Eur. Congr. Sleep Res., Zurich 1982, abstract.

  55. Leppävuori, A., and Putkonen, P.T.S., Alpha-adrenoceptive influences on the control of the sleep-waking cycle in the cat. Brain Res.193 (1980) 95–115.

    Article  PubMed  Google Scholar 

  56. Lidbrink, P., The effect of lesions of ascending noradrenaline pathways on sleep and waking in the rat. Brain Res.74 (1974) 19–40.

    Article  CAS  PubMed  Google Scholar 

  57. Lilly, J., Correlations between neurophysiological activity in the cortex and short-term behavior in the monkey. Interdiscipl. Res. Symp. Univ. of Wisconsin Press, Madison, Wisc. 1958.

  58. Mackworth, N.H., Vigilance. Advmt. Sci.53 (1957) 389–393.

    Google Scholar 

  59. Magnes, J., Moruzzi, G., and Pompeiano, O., Synchronization of the EEG produced by low frequency stimulation of the region of the solitary tract. Archs ital. Biol.99 (1961) 33–67.

    Google Scholar 

  60. Mason, S.T., and Iversen, S.D., Learning in the absence of forebrain noradrenaline. Nature, Lond.258 (1975) 422–424.

    Article  CAS  PubMed  Google Scholar 

  61. Mason, S.T., and Iversen, S.D., Theories of the dorsal bundle extinction effect. Brain Res. Rev.1 (1979) 107–137.

    Article  Google Scholar 

  62. Matsuyama, S., Coindet, J., and Mouret, J., 6-hydroxydopamine intracysternale et sommeil chez le rat. Brain Res.57 (1973) 85–95.

    Article  CAS  PubMed  Google Scholar 

  63. McAdam, D.W., and Seales, D.M., Bereitschafts-potential enhancement with increased level of motivation. Electroenceph. clin. Neurophysiol.27 (1969) 73–75.

    Article  CAS  PubMed  Google Scholar 

  64. McCallum, W.C., and Walter, W.G., The effects of attention and distraction on the contingent negative variation in normal and neurotic subject. Electroenceph. clin. Neurophysiol.25 (1968) 319–329.

    Article  CAS  PubMed  Google Scholar 

  65. Moises, H.C., Woodward, D.J., Hoffer, B.J., and Freedman, R., Interactions of norepinephrine with Purkinje cell responses to putative amino acid neurotransmitters applied by microiontophoresis. Exp. Neurol.64 (1979) 493–515.

    Article  CAS  PubMed  Google Scholar 

  66. Monnier, M., and Schoenenberger, G., Characterization, sequence, synthesis and specificity of a delta (EEG)-sleep-inducing peptide, in: Sleep 1976, Proc. 3rd Eur. Congr. Sleep Res., pp. 257–265. Eds W.P. Koella and P. Levin. Karger, Basel 1977.

    Google Scholar 

  67. Morrell, F., Microelectrode and steady potential studies suggesting dendritic locus of closure, in: The Moscow colloquium on electroencephalography of higher nervous activity, pp. 65–80. Eds H.H. Jaspe and G.D. Smirnov. Electroenceph. clin. Neurophysiol., suppl.13 (1960) 65–80.

  68. Moruzzi, G., and Magoun, H.W., Brain stem reticular formation and activation of the EEG. Electroenceph. clin. Neurophysiol. J.1 (1949) 455–473.

    Article  CAS  Google Scholar 

  69. Pappenheimer, J.R., Sleep factor in CSF, brain and urine. Front. Horm. Res.9 (1982) 173–178.

    Article  CAS  Google Scholar 

  70. Pappenheimer, J.R., Miller, T.B., and Goodrich, C.A., Sleep-promoting effects of cerebrospinal fluid from sleep-deprived goats. Proc. natl Acad. Sci.58 (1967) 513–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Parmeggiani, P.L., Schlafverhalten bei repetierender elektrischer Reizung im Thalamus, Mittelhirn und Fornix an der nichtnarkotisierten Katze. Pflügers Arch. ges. Physiol.274 (1961) 84–85.

    Article  Google Scholar 

  72. Pavel, S., Goldstein, R., Petrescu, M., and Popa, M., REM sleep induction in prepubertal boys by vasotocin: evidence for the involvement of serotonin containing neurons. Peptides2 (1981) 245–250.

    Article  CAS  PubMed  Google Scholar 

  73. Picton, T.W., and Hillyard, S.A., Human auditory evoked potentials. II. Effects of attention. Electroenceph. clin. Neurophysiol.36 (1974) 191–199.

    Article  CAS  PubMed  Google Scholar 

  74. Plotnikoff, N.P., Prange, A.J., Brecse, G.R., and Wilson, I.C., Thyrotropin releasing hormone: enhancement of dopa-activity in thyroidectomized rats. Life Sci.14 (1974) 1271–1278.

    Article  CAS  PubMed  Google Scholar 

  75. Prange, A., Breese, G.R., Cott, J.M., Martin, B.R., Cooper, B.R., Wilson, I.C., and Plotnikoff, N.P., Thyrotropin releasing hormone: antagonism of pentobarbital in rodents. Life Sci.14 (1974) 447–455.

    Article  CAS  PubMed  Google Scholar 

  76. Reis, D.J., Weinbren, M., and Corvelli, A., A circadian rhythm of norepinephrine regionally in cat brain: its relationship to environmental leighting and to regional diurnal variations in brain serotonin. J. Pharmac. exp. Ther.164 (1968) 135–146.

    CAS  Google Scholar 

  77. Ricci, G.F., and Zamparo, L., Electrocortical correlates of avoidance conditioning in the monkey. Their modfications by atropine and amphetamine, in: Pharmacology of conditioning, learning and retention, pp. 269–283. Eds M.Y. Michelson and V.G. Longo. Czechoslovak Medical Press, Praha 1965.

    Chapter  Google Scholar 

  78. Ritter, W., and Vaughan, H.G., Averaged evoked responses in vigilance and discrimination: a reassessment. Science164 (1969) 326–328.

    Article  CAS  PubMed  Google Scholar 

  79. Roberts, D.C.S., Zis, A.P., and Fibiger, H.C., Ascending catecholamine pathways and amphetamine-induced locomotor activity: importance of dopamine and apparent non-involvement of norepinephrine. Brain Res.93 (1975) 441–454.

    Article  CAS  PubMed  Google Scholar 

  80. Rougeul, A., Verdeaux, J., and Letalle, A., Effets électrographiques et comportementaux de divers hallucinogènes chez le chat libre. Rev. Neurol.120 (1969) 391–394.

    CAS  PubMed  Google Scholar 

  81. Scheving, L.E., Harrison, W.H., Gordon, P., and Pauly, J.E., Daily fluctuation (circadian and ultradian) in biogenic amines of the rat brain. Am. J. Physiol.214 (1968) 166–173.

    Article  CAS  PubMed  Google Scholar 

  82. Snyder, S.H., Banerjee, S.P., Yamamura, H.I., and Greenberg, D., Drugs, neurotransmitters and schizophrenia. Science184 (1974) 1243–1253.

    Article  CAS  PubMed  Google Scholar 

  83. Stein, L., Reward transmitters: Catecholamines and opioidpeptides, in: Psychopharmacology: A generation of progress, pp. 569–581. Eds M.A. Lipton, A. di Mascio and K.F. Killam. Raven Press, New York 1978.

    Google Scholar 

  84. Sterman, M.B., and Clemente, C.D., Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat. Exp. Neurol.6 (1962) 103–117.

    Article  CAS  PubMed  Google Scholar 

  85. Svensson, T.H., The effect of inhibition of catecholamine synthesis on dexamphetamine induced central stimulation. Eur. J. Pharmac.12 (1970) 161–166.

    Article  CAS  Google Scholar 

  86. Tanaka, C., Inagaki, C., and Fujiwara, H., Labeled noradrenaline release from rat cerebral cortex following electrical stimulation of locus coeruleus. Brain Res.106 (1976) 384–389.

    Article  CAS  PubMed  Google Scholar 

  87. Tecce, J.J., Contingent negative variation (CNV) and psychological processes in man. Psychol. Bull.77 (1972) 73–108.

    Article  CAS  PubMed  Google Scholar 

  88. Tecce, J.J., and Scheff, N.M., Attention reduction and suppressed direct-current potentials in the human brain. Science164 (1969) 331–333.

    Article  CAS  PubMed  Google Scholar 

  89. Thornburg, J.E., and Moore, K.E., A comparison of effects of apomorphine and ET 495 on locomotor activity and circling behavior in mice. Neuropharmacology13 (1974) 189–197.

    Article  CAS  PubMed  Google Scholar 

  90. Urban, I., and De Wied, D., Changes in excitability of the theta activity generating substrate by ACTH 4-10 in the rat. Exp. Brain Res.24 (1976) 325–334.

    Article  CAS  PubMed  Google Scholar 

  91. Vanderwolf, C.H., and Robinson, T.E., Reticulo-cortical activity and behavior: a critique of the arousal theory and a new synthesis. Behav. Brain Sci.4 (1981) 459–514.

    Article  Google Scholar 

  92. Walter, W.G., The contingent variation. An electrocortical sign of significant association on the human brain. Science146 (1964) 434.

    Google Scholar 

  93. Weissman, Koe, B.K., and Thenen, S.J., Antiamphetamine effects following inhibition of tyrosine hydroxylase. J. Pharmac. exp. Ther.151 (1966) 339–352.

    CAS  Google Scholar 

  94. Wikler, A., Pharmacologic dissociation of behavior and EEG ‘sleep patterns’ in dogs; morphine, N-allylmorphine and atropine. Proc. Soc. exp. Biol.79 (1952) 261–265.

    Article  CAS  PubMed  Google Scholar 

  95. Wirz-Justice, A., Groos, G.A., and Wehr, T.A., The neuropharmacology of circadian timekeeping in mammals, in: Vertebrate circadian systems: Structure and physiology. Eds J. Aschoff, S. Daan and G.A. Groos, Springer, Heidelberg 1982, in press.

    Google Scholar 

  96. Yamamoto, K., and Domino, E.F., Cholinergic agonist-antagonist interactions on neocortical and limbic EEG activation. Int. J. Neuropharmac.6 (1967) 357–375.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koella, W.P. A modern neurobiological concept of vigilance. Experientia 38, 1426–1437 (1982). https://doi.org/10.1007/BF01955754

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01955754

Navigation