Skip to main content
Log in

The forest-bog complex of southeast Alaska

  • Original Articles
  • Published:
Vegetatio Aims and scope Submit manuscript

Summary

Major vegetational, environmental, and peat accumulation patterns were studied in the forest-bog complex of southeast Alaska. Attention was directed to three levels of vegetational pattern: (1) the community type level, with forest, bog, and intermediate types being recognized; (2) the community level, with investigation of major variations within forest, bog, and, to a lesser extent, the intermediate community types; and (3) the subcommunity level, with major patterns of the forest understory and the bog surface, being investigated. Both extensive survey and intensive sampling were carried out in a fairly widespread, but geographically even, array of sites. Chief attention was given to vegetational aspects and gross physical factors, with patterns of these then being used to suggest possible correlating features of habitat. Actual correspondence will be determined in subsequent studies.

At the community type level, the three types blended into one another in a continually varying pattern, which, on a gross scale, conformed primarily to surface topography. Forests occurred chiefly on the steep mountain slopes, bogs on land of gentle repose, and intermediate communities on slopes in between these. That the correspondence was with drainage, rather than other microhabitat features related to topography, was shown by forest presence on land of little slope if it were near the ocean or large drainages, or on deep porous substrates, and by bog presence on steep slopes, if any local formations prevented runoff from being rapid the full length of the watershed. Major vegetational patterns on the peats conformed more with peat surface configuration than with peat depth, configuration of underlying topography, or major land slope.

Species' patterns at this level included dominance of the upland forests byTsuga heterophylla andPicea sitchensis, withChamaecyparis nootkatensis, Thuja plicata, andTsuga Mertensiana of local importance. The first two species were increasingly sparse, and the last three increasingly conspicuous (within their geographic ranges), in intermediate communities. On the bogs proper, onlyPinus was consistent in occurrence, and the trees were widely scattered, small and slow growing. Major shrub, herbaceous vascular plant, bryophyte and lichen shifts and patterns along this major floristic gradient are described. Some species reached maximum importance in the forests, others in the intermediate type and others in the bogs. The majority of the species had overlapping, but largely independent, patterns of importance.

At the community level, two major patterns were suggested by the forest data: (1) a shift from true upland forest, to forest showing increasingly poor drainage, and, finally, to bog forest; and (2) a shift from forests dominated by very large trees, with highPicea importance, an understory largely characterized by scattered small shrubs, herbaceous vascular plants, and mosses and liverworts indicative of moist oxygenated surfaces, to forests with lessPicea, smaller trees, a deep continuous moss cover, dense shrubs where the canopy was somewhat open and only mosses and sparse herbs where the canopy was closed. These patterns are postulated to correspond to specific combinations of slope angle, the possibility of receiving bog drainage waters, nearness to large streams or the ocean, substrate porosity, and varying mixtures of soil fertility, moisture, oxygenation, and depth.

The two major patterns suggested for the bogs at the community level are: (1) a gradation from probably soligenous bogs to probably ombrogenous bogs; and (2) a gradation from actively growing bogs of various surface configurations to bogs with an apparently stagnant main surface. Possible recent rejuvenation of a few of these stagnant bogs was indicated. Various possible relationships among the bogs are discussed.

The forest subcommunities were subjectively divided into those of (1) varying dominance by different life forms; and (2) variations in surface moisture conditions. Bog surface subcommunities were divided into (1) wet sites, including steep-sided pit ponds, shallow wet hollows, surface drainage systems, floating mats and eroding bare peats; and (2) dry subcommunities, including mounds, varyingSphagnum dominance, and varying importance of bog shrubs and the sedges.

The postulated patterns at all levels are based on fairly extreme examples. Many groupings were found that exhibited varying mixtures of these more extreme conditions, either throughout “simple” communities, or as parts of “complex” communities. Whether the more extreme conditions are sufficiently numerous and distinct in the region to form a basis of classification, or whether no such limits can be set except by arbitrary decision, and the regional vegetation would be dealt with best on the basis of continuous variation, remains to be determined.

The most pronounced impression gained from this vegetation is one of a continuous shifting of habitat patterns and species' occurrence, co-occurrence, and vigor at all levels in both time and space. Such has certainly been observed before with respect to vegetation, but may be particularly conspicuous in this region in which extensive land use and settlement has not occurred; and climate, topography and related features, and peat accumulation are such that a continuous tension exists at all levels between: (1) tendencies for better drainage, forest development, and raised bog humification; and (2) poorer drainage, bog development and raised bog growth. The actual vegetation at any one time and place would depend on the particular combination of the climate and surface physical features at that time and place, and the time lag of vegetational and substrate response to climatic fluctuation.

Résumé

Cette étude porte sur les arrangements principaux de végétation, de milieu et d'accumulation de tourbe dans le complexe formé par la forêt et les marais dans l'Alaska du Sud-Est. Notre attention s'est portée sur trois plans de disposition de la végétation: 1) le plan de la communauté forestière, qui comprend la forêt, le marais et des types intermédiaires; 2) le plan de la sous-communauté forestière, qui comprend l'investigation des variations principales dans la forêt, le marais, et, à un moindre degré, les types intermédiaires de la communauté forestière; et 3) le plan de la sous-communauté, qui comprend l'investigation des arrangements principaux du sous-sol forestier et de la surface marécageuse. Nous avons effectué une inspection poussée et fait des prélèvements intenses sur des lieux assez étendus, mais géographiquement unis. On a porté une attention particulière aux aspects de la végétation et aux traits physiques les plus saillants, en se servant de ceux-ci pour découvrir les facteurs possibles de corrélations d'habitat. Des études qui suivent permettront d'en déterminer la corrélation.

Au plan de la communauté, les trois genres s'entremêlaient dans un arrangement qui variait continuellement, lequel, en gros, se conformait à la topographie de la surface. On trouvait les forêts surtout sur les pentes raides montagneuses, les marais sur des terres aux lignes douces, et des communautés intermédiaires entre les deux, sur les pentes. La correspondance était avec le drainage plutôt qu'avec d'autres traits microhabitats rattachés à la topographie, et cela était démontré par la présence de forêts sur un terrain peu incliné, dans le cas de la proximité de l'océan, ou de vastes drainages, ou sur de profonds substrates poreux, et par la presénce de marais sur des pentes abruptes quand des formations locales empêchaient l'écoulement rapide tout au long de la ligne de partage des eaux. Les dispositions principales de la végétation sur les tourbières étaient en conformité avec la configuration de la tourbe dans sa surface plus que dans sa profondeur, la configuration de la topographie sous-jacente, ou la majeure inclinaison de terrain.

Les arrangements des espèces à ce niveau comprenaient la prédominance des forêts de montagnes avecTsuga heterophylla etPicea sitchensis, avecChamaecyparis nootkatensis, Thuja plicata etTsuga Mertensiana d'importance locale. Les deux premières espèces étaient de plus en plus en évidence (en leur zone géographique) dans les communautés intermédiaires. Sur les marécages mêmes, lePinus seul se trouvait de façon constante, avec des arbres répartis sur une grande étendue, arbres courts et à croissance lente. Pour les principaux arbrisseaux, plantes vasculaires herbacées, bryophytes et lichens, les changements et l'organisation dans le sens de cette gradation de la flore sont décrits. Quelques espèces atteignaient le maximum de leur importance dans les forêts, d'autres dans les formes intermédiaires, d'autres dans les marais. La majorité des espèces montrait un chevauchement dans l'importance de leurs repartitions mais celles-ci étaient hautement indepéndantes.

Au niveau de la communauté forestière deux arrangements principaux étaient suggérés par les données de la forêt: 1) une modification depuis la véritable forêt de montagne en forêt de moins en moins drainée et finalement, en forêt marécageuse; 2) une modification à partir de forêts dominées par de gros arbres (surtoutPicea) un sous-sol fortement caractérisé par des arbrisseaux petits et clairsemés, des plantes herbacées vasculaires, desBryophytes etHépatiques, signes de surfaces humides oxygenées; en forêts ayant de moins en moins dePicea, des arbres plus petits, une étendue de mousse profonde et continue, des arbustes abondants là où la voùte s'entouvait quelque peu, et seulement des mousses et des herbes clairsemées là où la voùte d'arbres se refermait.

On considère comme admis que ces arrangements correspondent à des combinations de l'inclinaison du terrain à la reception possible d'eaux d'écoulement des marais, à la proximité de grandes rivières ou de l'océan, à la porosité du substratum, et aux combinaisons variées de fertilité du sol, humidité, oxygénation et profondeur. Les deux arrangements principaux supposés pour le marais sur le plan communautaire sont: 1) une gradation depuis les marais produits par des eaux de surface jusqu'aux marais causés par les pluies, et 2) une gradation depuis les marais à poussée active et à configurations de surface variées jusqu'aux marais offrant une surface principale d'apparence stagnante.

La division subjective des sous-communautés forestières à la surface des marais, se divisaient en: 1) lieux humides, y compris les étangs à flancs escarpés, trous humides peu profonds, systèmes de drainage de surface, végétaux flottants et tourbes dénudées en décomposition; et 2) sous communautés sèches comprenant des monticules, prédominance diverse deSphagnum, une répartition variée d'arbrisseaux de marécages, et les laîches.

Sur tous les plans, les arrangements présumés sont basés sur des exemples presque extrêmes. On a trouvé de nombreaux groupements montrant des mélanges variés de ces conditions les plus extrêmes, soit dans de simples communautés soit comme composants des communautés complexes. Il reste a déterminer si les conditions les plus extrêmes sont suffisamment fréquentes et distinctes dans la région pour donner une base de classification, ou s'il est impossible de poser ces limites, sauf par une décision arbitraire, et serait-il préférable de traiter de la végétation régionale sur la base de la variation continue. Cette végétation donne une forte impression de déplacement continu d'arrangement d'habitat et de co-occurrence d'espèces et de vigueur sur tous les plans à la fois dans le temps et dans l'espace. C'est ce que l'on a déjà observé en ce qui concerne la végétation, mais c'est particulièrement évident dans cette région qui n'a pas connu d'intense utilisation du sol et de colonisation; le climat, la topographie et les caractéristiques qui s'y rattachent aussi bien que l'accumulation de tourbe sont telles qu'une tension persistente existe à tous les niveaux entre: 1) les tendances vers un meilleur drainage, le développement forestier et la transformation en humus des marais elevés et 2) l'insuffisance de drainage, le développement des marécages et l'extension des marécages elevés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Anderson, H. E., 1953 — Range of western redcedar (Thuja plicata) in Alaska. U. S. For. Serv. Alaska For. Res. Center. Tech. Note No. 22. 2 pp.

  • Anderson, H. E., 1954 — Clearcutting as a silviculture system in Southeast Alaska. Proc. Fifth Alaska Sci. Conf. pp. 1–4.

  • Anderson, H. E., 1955 — Climate in southeastern Alaska in relation to tree growth. U. S. For. Serv. Alaska For. Res. Center. Station Paper No. 3. 5 pp.

  • Anderson, H. E., 1959 — Silvical characteristics of Alaska-Cedar (Chamaecyparis nootkatensis). Ibid. Station Paper No. 11, 10 pp.

  • Anderson, J. P., 1959 — Flora of Alaska and adjacent parts of Canada. Iowa State Univ. Press, Ames. 543 pp.

  • Auer, V., 1930 — Peat bogs of southeastern Canada. Geol. Surv. Mem. 162. Canad. Dept. of Mines, Ottawa. 32 pp.

  • Bishop, D. M. &M. E. Stevens, 1964 — Landslides on logged areas in southeast Alaska. U. S. For. Serv., North. For. Expt. Sta., Juneau. Res. Paper NOR-1. 18 pp.

  • Boatman, D. J., 1961 — Vegetation and peat characteristics of blanket bogs in County Kerry.J. Ecol. 49, 507–517.

    Google Scholar 

  • Bray, J. R. &J. T. Curtis, 1957 — An ordination of the upland communities of Wisconsin.Ecol. Monogr. 27; 325–349.

    Google Scholar 

  • Buddington, H. F. &T. Chapin, 1929 — Geology and mineral deposits of Southeastern Alaska.U. S. Geol. Sur. Bull. 800. 398 pp.

  • Camp, W. H., 1942 — A survey of the American species of Vaccinium subgenus Euvaccinium.Brittonia, 4; 205–241.

    Google Scholar 

  • Cottam, G. &J. T. Curtis, 1956 — The use of distance measurements in phytosociological sampling.Ecology 37; 451–460.

    Google Scholar 

  • Condon, W. H., 1961 — Geology of the Craig Quadrangle, Alaska, U. S. Geol. Surv. Bull. 1108-B. 43 pp.

  • Conway, V. M., 1949 — The bogs of central Minnesota.Ecol. Monogr. 19; 175–205.

    Google Scholar 

  • Cooper, W. S., 1923 — The recent ecological history of Glacier Bay, Alaska. I–III.Ecology, 4; 93–128, 223–246, 355–365.

    Google Scholar 

  • Cooper, W. S., 1924 — The forests of Glacier Bay — present, past and yet unborn.J. For. 22; 16–23.

    Google Scholar 

  • Cooper, W. S., 1957 — Vegetation of the Northwest American Province.Proc. Eight Pac. Sci. Conf. 4; 133–138.

    Google Scholar 

  • Critchfield, W. B., 1957 — Geographic variation in Pinus contorta, Maria Moors Cabot Foundation. Publ. No. 3. Harvard. 181 pp.

  • Crocker, R. L. &B. A. Dickson, 1957 — Soil development on the recessional moraines of the Herbert and Mendenhall glaciers, southeastern Alaska.J. Ecol. 45; 169–185.

    Google Scholar 

  • Crocker, R. L. &J. Major, 1955 — Soil development in relation to vegetation and surface age at Glacier Bay, Alaska.J. Ecol. 43; 427–448.

    Google Scholar 

  • Dachnowski-Stokes, A. P., 1941 — Peat resources in Alaska. U. S. Dept. Agri. Tech. Bull. No. 769. 84 pp.

  • Dansereau, P. &F. Segadas-Vianna, 1952 — Ecological study of the peat bogs of eastern North America.Can. J. Bot. 30; 490–520.

    Google Scholar 

  • Darlington, H. C., 1943 — Vegetation and substrate of Cranberry Glades, West Virginia.Bot. Gaz. 104; 371–393.

    Google Scholar 

  • Day, W. R., 1957 — Sitka spruce in British Columbia. A study in forest relationships. For. Comm. Bull. No. 28. Her Majesty's Stationery Office, London. 110 pp.

    Google Scholar 

  • Dutro, J. T. &T. G. Payne, 1954 — Geologic map of Alaska. U. S. Geol. Survey.

  • Godman, R. M., 1952 — A classification of the climax forests of southeastern Alaska.J. For. 50; 435–438.

    Google Scholar 

  • Godman, R. M. &R. A. Gregory, 1955 — Seasonal distribution of radial and leader growth in the Sitka spruce-western hemlock forests of southeast Alaska.J. For. 53; 827–833.

    Google Scholar 

  • Goldthwait, R. P., 1959 — Post-Wisconsin changes in southeast Alaska. Proc. Tenth Alaska Sci. Conf., pp. 108–109.

  • Goldthwait, R. P., F. Loewe, F. C. Ugolini, H. F. Decker, D. M. DeLong, M. B. Trautman, E. E. Good, T. R. Merrell III, &E. D. Rudolph, 1966 — Soil development and ecological succession in a deglaciated area of Muir Inlet, Southeast Alaska. Inst. of Polar Studies Report No. 20. Ohio State Univ. Res. Found., Columbus. 167 pp.

    Google Scholar 

  • Goodall, D. W., 1963 — The continuum and the individualistic association.Vegetatio, 11; 297–316.

    Google Scholar 

  • Gorham, E., 1950 — Variation in some chemical conditions along the borders of aCarex lasiocarpa fen community.Oikos 2; 217–240.

    Google Scholar 

  • Gorham, E., 1953b — chemical studies on the soils and vegetation of water-logged habitats in the English Lake District.J. Ecol., 41; 345–360.

    Google Scholar 

  • Gorham, E., 1956b — On the chemical composition of some waters from the Moor House Nature Reserve.J. Ecol. 44; 375–382.

    Google Scholar 

  • Gorham, E., 1957 — The development of peat lands.Quart. Rev. Biol. 32; 145–166.

    Google Scholar 

  • Gorham, E., 1961 — Water, ash, nitrogen and acidity of some bog peats and other organic soils.J. Ecol. 49; 103–106.

    Google Scholar 

  • Gregory, R. A., 1957 — Some silvicultural characteristics of western redcedar in Southeast Alaska.Ecology 38; 646–649.

    Google Scholar 

  • Heinselman, M. L., 1963 — Forest sites, bog processes and peatland types in the glacial Lake Agassiz region, Minnesota.Ecol. Monogr. 33; 327–374.

    Google Scholar 

  • Heintzleman, B. F., 1949 — Trees of Alaska. in Trees. U. S. Dept. of Agri. Yearbook. pp. 361–372.

  • Heusser, C. J., 1952 — Pollen profiles from southeast Alaska.Ecol. Monogr. 22; 331–352.

    Google Scholar 

  • Heusser, C. J., 1954 — Additional pollen profiles from southeast Alaska.Amer. J. Sci. 252; 106–119.

    Google Scholar 

  • Heusser, C. J., 1960 — Late-Pleistocene environments of North Pacific North America. Amer. Geog. Soc. Sp. Publ. No. 35. 308 pp.

  • Hultén, Eric, 1968 — Flora of Alaska and neighboring territories. Stanford Univ. Press, Stanford, California, U.S.A. 1008 pp.

    Google Scholar 

  • Johnson, F. A., 1962 — Waterpower resources near Petersburg and Juneau, Southeastern Alaska. U. S. Geol. Surv. Water Supply Paper No. 1529. Govt. Print. Office. 102 pp.

  • Karlstrom, T. N. V. and others, 1960 — Surficial geology of Alaska. (map) U. S. Geol. Survey.

  • Kellogg, C. E. &I. J. Nygard, 1951 — The principal soil groups of Alaska. U. S. Dept. of Agri. Mono. No. 7. 138 pp.

  • Kimmey, J. W., 1956 — Cull factors for Sitka spruce, western hemlock and western redcedar in Southeast Alaska. U. S. For. Serv. Alaska For. Res. Center Station Paper No. 6.

  • Klein, J. A., 1951 — Defect in the climax forests of Southeast Alaska. U. S. For. Serv. Alaska For. Res. Center. Tech. Note No. 9. 1 p.

  • Klein, D. R., 1965 — Ecology of deer range in Alaska.Ecol. Monogr. 35; 259–284.

    Google Scholar 

  • Krajina, V. J., 1965 — Biogeoclimatic zones and biogeocoenoses of British Columbia.Ecol. of Western N. Amer. I; 1–17.

    Google Scholar 

  • Langenheim, J. H., 1962 — Vegetation and environmental patterns in the Crested Butte area, Gunnison County, Colorado.Ecol. Monogr. 32; 249–285.

    Google Scholar 

  • Lawrence, D. B., 1950 — Glacier fluctuation for six centuries in southeastern Alaska and its relation to solar activity.Geog. Rev. 40; 191–223.

    Google Scholar 

  • Lawrence, D. B., 1958 — Glaciers and vegetation in southeastern Alaska.Am. Sci. 46, 89–122.

    Google Scholar 

  • Loney, R. A., 1965 — Structural analysis of the Pybus-Gambier area of Admiralty Island, Alaska. Univ. of Calif.Publ. in Geol. Sci. 46; 33–80.

    Google Scholar 

  • McGregor, R. C., 1956 — Fire weather measurements in southeast Alaska, 1955. U. S. For. Serv. Alaska For. Res. Center. Tech. Note No. 30. 2 pp.

  • McIntosh, R. P., 1967 — The continuum concept of vegetation.Bot. Rev. 33; 130–187.

    Google Scholar 

  • Meier, M. F. &A. S. Post, 1962 — Recent variations in mass net budgets of glaciers in western North America. In Intern. Assoc. of Sci. Hydrol. Symposium of Obergrgl. Publ. No. 58. pp. 63–77.

  • Merriam, H. R., 1965 — The wolves of Coronation Island. Proc. of the Fifteenth Alaska Sci. Conf. pp. 27–32.

  • Miller, J. C., 1962 — Geology of waterpower sites on Scenery, Cascade and Delta Creeks near Petersburg, Alaska. U. S. Geol. Surv. Bull. 1031-E. 125 pp.

  • Northern Forest Experiment Station, Biennial Reports 1957, 1958, 1960–61, 1962, 1963. U. S. Dept. Agri. Forest Serv., Juneau, Alaska.

  • Oswald, H., 1933 — Vegetation of the Pacific Coasts bogs of North America.Acta Phytogeographica Suecica, 5, 1–32.

    Google Scholar 

  • Pearsall, W. H., 1950 — Mountains and moorlands. Collins, London. 312 pp.

    Google Scholar 

  • Pearsall, W. H., 1956 — Two blanket-bogs in Sutherland.J. Ecol. 44; 493–516.

    Google Scholar 

  • Perry, R. S., 1954 — Yellow cedar; its characteristics, properties, and uses. Canada Dept. North. Aff. and Natl. Resources, Forest Branch. Bull. 114. 19 pp.

  • Pierce, C., 1961 — Is sea level falling or the land rising in Southeast Alaska?Surveying and Mapping 21; 51–56.

    Google Scholar 

  • Porsild, A. E., 1939 — Contributions to the flora of Alaska.Rhodora 41; 141–254; 262–301.

    Google Scholar 

  • Ratchiffe, D. A. &D. Walker, 1958 — The Silver Flow, Galloway, Scotland.J. Ecol. 46; 407–445.

    Google Scholar 

  • Reed, J. C., 1958 — Southeastern Alaska.in Williams, H. (ed.) Landscapes of Alaska. Univ. of Calif. Press. pp. 9–18.

  • Rigg, G. B., 1917 — Forest succession and rate of growth in Sphagnum bogs.J. For. 15; 726–739.

    Google Scholar 

  • Rigg, G. B., 1937 — Some raised bogs of southeastern Alaska with notes on flat bogs and muskeg.Amer. J. Bot. 24; 194–198.

    Google Scholar 

  • Rigg, G. B., 1940 — The development ofSphagnum bogs in North America.Bot. Rev. 6; 666–693.

    Google Scholar 

  • Rigg, G. B., 1951 — The development ofSphagnum bogs in North America.Bot. Rev. 17; 109–131.

    Google Scholar 

  • Rowe, J. S., 1956 — Uses of undergrowth plant species in forestry.Ecology 37; 461–473.

    Google Scholar 

  • Sandor, J. A. &J. E. Weisgerber, 1958 — Timber Management Plan, Tongass National Forest. U. S. For. Serv., Timber Management, Juneau, Alaska. 37 pp.

    Google Scholar 

  • Sjors, H., 1950 — On the relations between vegetation and electrolytes in north Swedish mire waters.Oikos 2; 241–258.

    Google Scholar 

  • Sjors, H., 1961 — Surface patterns in boreal peatlands.Endeavour, 20: 217–224.

    Google Scholar 

  • Stephens, F. R. &R. F. Billings, 1965 — Kadashan Soil Survey. Chichagof Island, Alaska. U. S. Dept. Agri. For. Serv., Juneau, Alaska. 21 pp.

    Google Scholar 

  • Stephens, F. R., C. R. Gass &R. F. Billings, 1968 — Soils and site index in Southeast Alaska. Report No. 2 of the Soil-Site Index; U. S. For. Serv., Juneau, Alaska, 17 pp.

    Google Scholar 

  • Stevens, M. E., 1965 — Relation of vegetation to some soils in southeastern Alaska.in Youngberg, C. T. (ed.). Forest-Soil relationships in North America. Oregon State Univ. Press, Corvallis. pp. 177–180.

    Google Scholar 

  • Tallis, J. H., 1958 — Studies on the biology and ecology ofRhacomitrium lanuginosum. I. Distribution and ecology.J. Ecol. 46; 271–288.

    Google Scholar 

  • Tallis, J. H., 1964 — Studies on southern Pennine peats. II. The pattern of erosion.J. Ecol. 52; 333–344.

    Google Scholar 

  • Tallis, J. H. andH. J. B. Birks, 1965 — The past and present distribution ofScheuchzeria palustris L. in Europe.J. Ecol. 53; 287–298.

    Google Scholar 

  • Tansley, A. G., 1949 — The British Islands and their vegetation. Cambridge Univ. Press, Cambridge. 930 pp.

    Google Scholar 

  • Taylor, R. F., 1929 — The role of Sitka spruce in the development of second growth in southeastern Alaska.J. For. 27; 532–534.

    Google Scholar 

  • Taylor, R. F., 1932 — The successional trend and its relation to second growth forests in southeastern Alaska.Ecology, 13; 381–391.

    Google Scholar 

  • Taylor, R. F., 1934 — Yield of second-growth western hemlock-Sitka spruce stands in Southeastern Alaska. U. S. Dept. Agri. Tech. Bull. 412. 30 pp.

  • Taylor, R. F., 1935 — Available nitrogen as a factor influencing the occurrence of Sitka spruce and western hemlock seedlings in the forests of southeastern Alaska.Ecology 16; 580–602.

    Google Scholar 

  • Taylor, R. F. &R. M. Godman, 1950 — Increment and mortality in southeastern Alaska's second-growth stands.J. For. 48; 329–331.

    Google Scholar 

  • Turesson, G., 1916 —Lysichitum camtschatcense (L.)Schott. and its behavior in Sphagnum bogs.Am. J. Bot. 3; 189–209.

    Google Scholar 

  • Twenhofel, W. S., 1952 — Recent shoreline changes along the Pacific coast of Alaska.Am. J. Sci. 250; 523–548.

    Google Scholar 

  • U. S. Dept. of Agriculture, 1941 — Climate and Man. Yearbook of Agriculture. Govt. Print. Off., Washington. 1248 pp.

    Google Scholar 

  • U. S. Dept. of Commerce, Weather Bureau, 1965 — Climate Summary of the United States Supplement for 1951–1960. Climatog. of the U. S. No. 86-43. Govt. Print. Off., Washington. 67 pp.

    Google Scholar 

  • U. S. Dept. of Interior, 1961 – 1965 — Publications of the Geological Survey, 1879–1961, Supplements 1962, 1963, 1965. U. S. Govt. Print. Office.

  • Waananen, A. O., 1951 — The hydrology of Alaska. in Science in Alaska ed. by H. B. Collins, Selected papers of the 1950 Science Conf. pp. 151–162.

  • Walker, D. &P. M. Walker, 1961 — Stratigraphic evidence of regenerations in some Irish bogs.J. Ecol. 49; 169–185.

    Google Scholar 

  • Whittaker, R. H., 1967 — Gradient analysis of vegetation.Biol. Rev. 42; 207–264.

    PubMed  Google Scholar 

  • Wood, F. J. (ed.), 1966 — The Prince William Sound, Alaska earthquake of 1964 and aftershocks. U. S. Dept. Comm., Coast and Geod. Surv. Publ. 10–3. 263 pp.

  • Zach, L. W., 1950 — A northern climax, forest of muskeg?Ecology 31; 304–306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by the National Science Foundation, Grant Nos. G-2356a, GB-961, and GB-3503.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neiland, B.J. The forest-bog complex of southeast Alaska. Plant Ecol 22, 1–64 (1971). https://doi.org/10.1007/BF01955719

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01955719

Keywords

Navigation