Skip to main content
Log in

Patch clamp technique and biophysical study of membrane channels

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The present work describes the patch clamp technique, which first allowed the recording of single channel currents in biological membranes. In particular, it describes procedures for preparation and applications of the four different patch clamp configurations. Briefly, the cell-attached configuration is widely used for investigating channel modulation by transmitters acting via second messengers. The cell-free configurations (inside-out and outside-out), complementary to one another with respect to the orientation of the membrane surface, are particularly indicated for the study of the biophysics (kinetics, conductivity, selectivity, mechanism of permeation and block) of ionic channels. Finally, the whole-cell configuration which, because of the remarkable feature that it allows voltage clamp of very small cells, has given access to a number of physiologically important preparations never studied before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adelman, W. J., Jr., (Ed) Biophysics and Physiology of Excitable Membranes. Van Nostrand Reinhold, New York, 1971.

    Google Scholar 

  2. Attwell, D., and Gray, P., Patch clamp recording from isolated rods of the salamander retina. J. Physiol.351 (1984) 9P.

    Google Scholar 

  3. Bacigalupo, J., and Lisman, J. E., Single-channel currents activated by light inLimulus ventral photoreceptors. Nature304 (1983) 268–270.

    Article  CAS  PubMed  Google Scholar 

  4. Benham, C. D., Bolton, T. B., Lang, R. J., and Takewaki, T., The mechanism of action of Ba and TEA on single Ca2+-activated K-channels in arterial and intestinal smooth muscle cell membranes. Pflügers Arch.403 (1985) 120–127.

    Article  CAS  PubMed  Google Scholar 

  5. Bevan, S., Gray, P. T. A., and Ritchie, J. M., A calcium-activated cation selective channel in rat cultured Schwann cell. Proc. R. Soc. Lond. B222 (1984) 349–355.

    Article  CAS  PubMed  Google Scholar 

  6. Blatz, A. L., and Magleby, K. L., Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle. J. gen. Physiol.84 (1984) 1–23.

    Article  CAS  PubMed  Google Scholar 

  7. Brum, G., Osterrieder, W., and Trautwein, W.,β-Adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pflügers Arch.401 (1984) 111–118.

    Article  CAS  PubMed  Google Scholar 

  8. Cachelin, A. B., de Peyer, J. E., Kokubun, S., and Reuter, H., Calcium channel modulation by 8-bromo-cyclic AMP in cultured heart cells. Nature304 (1983a) 462–64.

    Article  CAS  PubMed  Google Scholar 

  9. Cachelin, A. B., de Peyer, J. E., Kokubun, S., and Reuter, H., Sodium channels in cultured cardiac cells. J. Physiol.340 (1983b) 389–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cahalan, M. D., Chandy, K. G., DeCoursey, T. E., and Gupta, S., A voltage-gated potassium channel in human lymphocytes. J. Physiol.358 (1985) 197–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colquhoun, D., Neher, E., Reuter, H., and Stevens, C. F., Inward current channels activated by intracellular Ca2+ in cultured cardiac cells. Nature294 (1981) 752–754.

    Article  CAS  PubMed  Google Scholar 

  12. Conti, F., and Neher, E., Single channel recordings of K currents in squid axons. Nature285 (1980) 140–143.

    Article  CAS  PubMed  Google Scholar 

  13. Corey, D. R., and Stevens, C. F., Science and technology of patch recording electrods, in: Single Channel Recordings, pp. 53–68 Eds B. Sakmann and E. Neher. Plenum Press, New York 1983.

    Chapter  Google Scholar 

  14. Cull-Candy, S. G., Miledi, R., and Parker, I., Single glutamate-activated channels recorded from locust muscle fibres with perfused patch electrodes. J. Physiol.321 (1981) 195–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DeCoursey, T. E., Chandy, K. G., Gupta, S., and Cahalan, M. D., Voltage-gated K channels in T lymphocytes: a role in mitogenesis? Nature307 (1984) 465–468.

    Article  CAS  PubMed  Google Scholar 

  16. Ewald, D. A., Williams, A., and Levitan, I. B., Modulation of single Ca2+-dependent K-channel activity by protein phosphorylation. Nature315 (1985) 503–506.

    Article  CAS  PubMed  Google Scholar 

  17. Fenwick, E. M., Marty, A., and Neher, E., A patch-clamp study of bovine chromaffin cells and their sensitivity to acetylcholine. J. Physiol.331 (1982a) 577–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fenwick, E. M., Marty, A., and Neher, E., Sodium and calcium channels in bovine chromaffin cells. J. Physiol.331 (1982b) 599–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Findlay, I., A patch-clamp study of potassium channels and whole-cell current in acinar cells of the mouse lacrimal gland. J. Physiol.350 (1984) 179–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gallin, E. K., Calcium- and voltage-activated potassium channels in human macrophages. Biophys. J.45 (1984) 821–825.

    Article  Google Scholar 

  21. Grygorczyk, R., Schwarz, W., and Passow, H., Ca2+-activated K channels in human red cells. Biophys J.45 (1984) 693–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hagiwara, S., and Ohmori, H., Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp. J. Physiol.331 (1982) 231–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamill, O. P., Potassium and chloride channels in red blood cells, in: Single Channel Recordings, pp. 451–471. Eds B. Sakmann and E. Neher. Plenum Press, New York 1982.

    Google Scholar 

  24. Hamill, O. P., Bormann, J., and Sakmann, B., Activation of multiple conductance state chloride channels in spinal neurones by glicine and GABA. Nature305 (1983) 805–808.

    Article  CAS  PubMed  Google Scholar 

  25. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch.391 (1981) 85–100.

    Article  CAS  PubMed  Google Scholar 

  26. Hamill, O. P., and Sakmann, B., A cell-free method for recording single-channel currents from biological membranes. J. Physiol.312 (1981) 41–42P.

    Google Scholar 

  27. Hille, B., Ionic Channels of Excitable Membranes, Sinauer Associates Inc., Sunderland, Massachusetts 1984.

    Google Scholar 

  28. Hodgkin, A. L., The Conduction of the Nervous Impulse, Liverpool University Press 1964.

  29. Hodgkin, A. L., and Huxley, A. F., Currents carried by sodium ad potassium ions through the membrane of the giant axon ofLoligo. J. Physiol.116 (1952a) 449–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hodgkin, A. L., and Huxley, A. F., The components of the membrane conductance in the giant axon ofLoligo. J. Physiol.116 (1952b) 473–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Horn, R., and Patlack, J., Single channel current from excised patches of muscle membrane. Proc. natn. Acad. Sci. USA77 (1980) 6930–6934.

    Article  CAS  Google Scholar 

  32. Horn, R., and Vandenberg, C. A., Statistical properties of single sodium channels. J. gen. Physiol.84 (1984) 505–534.

    Article  CAS  PubMed  Google Scholar 

  33. Horn, R., Patlack, J., and Stevens, C. F., Sodium channels need not open before they inactivate. Nature291 (1981a) 226–227.

    Article  Google Scholar 

  34. Horn, R., Patlack, J., and Stevens, C. F., The effect of tetramethylammonium on single sodium channel currents. Biophys J.36 (1981b) 321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kameyama, M., Kakei, M., Sato, R., Shibasaki, T., Matsuda, H., and Irisawa, H., Intracellular Na activates a K channel in mammalian cardiac cells. Nature309 (1984) 354–356.

    Article  CAS  PubMed  Google Scholar 

  36. Katz, B., Nerve, Muscle, and Synapse. McGraw-Hill, New York 1966.

    Google Scholar 

  37. Kostyuk, P. G., and Krishtal, O. A., Separation of sodium and calcium currents in the somatic membrane of mollusc neurons. J. Physiol.270 (1977) 545–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kostyuk, P. G., Calcium ionic channels in electrically excitable membrane. Neuroscience5 (1980) 945–959.

    Article  CAS  PubMed  Google Scholar 

  39. Krishtal, O. A., and Pidoplichko, V. I., A receptor for protons in the nerve cell membrane. Neuroscience5 (1980) 2325–2327.

    Article  CAS  PubMed  Google Scholar 

  40. Kuo, J. F., and Greengard, P., Cyclic nucleotide-dependent protein kinases, IV. Widespread occurrence of adenosin 3′,5′-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc. natn. Acad. Sci. USA64 (1969) 1349–1355.

    Article  CAS  Google Scholar 

  41. Lee, K. S., Akaike, N., and Brown, A. M., Trypsin inhibits the action of tetrodotoxin on neurones. Nature265 (1977) 751–753

    Article  CAS  PubMed  Google Scholar 

  42. Lee, K. S., Akaike, N., and Brown, A. M., The suction pipette method for internal perfusion and voltage clamp in small excitable cells. J. Neurosci. Meth.2 (1980) 51–78.

    Article  CAS  Google Scholar 

  43. Lux, H. D., and Nagy, K., Single channel Ca2+ currents inHelix pomatia neurons. Pflügers Arch.391 (1981) 252–254.

    Article  CAS  PubMed  Google Scholar 

  44. Lux, H. D., Neher, E., and Marty, A., Single channel activity associated with the calcium dependent outward current inHelix pomatia. Pflügers Arch.389 (1981) 293–295.

    Article  CAS  PubMed  Google Scholar 

  45. Magleby, K. L., and Pallotta, B. S., Dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle. J. Physiol.344 (1983) 585–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marty, A., Ca-dependent K channels with large unitary conductance in cromaffin cell membranes. Nature291 (1981) 497–500.

    Article  CAS  PubMed  Google Scholar 

  47. Marty, A., and Neher, E., Ionic channels in cultured rat pancreatic islet cells. J. Physiol.326 (1982) 36–37P.

    Google Scholar 

  48. Maruyama, Y., and Petersen, O. H., Single-channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini. Nature299 (1982a) 159–161.

    Article  CAS  PubMed  Google Scholar 

  49. Maruyama, Y., and Petersen, O. H., Cholecystokinin activation of single-channel currents is mediated by internal messenger in pancreatic acinar cells. Nature300 (1982b) 61–63.

    Article  CAS  PubMed  Google Scholar 

  50. Neher, E., Unit conductance studies in biological membranes, in: Techniques in Cellular Physiology. Ed. P. F. Baker. Elsevier/North-Holland, Amsterdam 1982.

    Google Scholar 

  51. Neher, E., and Sakmann, B., Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature260 (1976) 799–802.

    Article  CAS  PubMed  Google Scholar 

  52. Noma, A., Sakmann, B., and Trautwein, W., Acetylcholine activation of single muscarinic K+-channels in isolated pacemaker cells of mammalian heart. Nature303 (1983) 250–253.

    Article  PubMed  Google Scholar 

  53. Ohmori, H., Studies of ionic currents in the isolated vestibular hair cell of the chick. J. Physiol.350 (1984) 561–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Patlack, J. B., Gration, K. A. F., and Usherwood, P. N. R., Single glutamate-activated channels in locust muscle. Nature278 (1979) 643–645.

    Article  Google Scholar 

  55. Quinn, P. J., The Molecular Biology of Cell Membranes. University Park Press, Baltimore, 1976.

    Google Scholar 

  56. Sakmann, B., and Neher, E., Geometric parameters of pipette and membrane patches, in: Single Channel Recording, pp. 37–51. Eds B. Sakmann and E. Neher. Plenum Press, New York 1983a.

    Chapter  Google Scholar 

  57. Sakmann, B., and Neher, E., (Eds), Single Channel Recording. Plenum Press, New York 1983b.

    Google Scholar 

  58. Sakmann, B., and Neher, E., Patch clamp techniques for studying ionic channels in excitable membranes. A. Rev. Physiol.46 (1984) 455–472.

    Article  CAS  Google Scholar 

  59. Sakmann, B., Noma, A., and Trautwein, W., Acetylcholine activation of single muscarinic K channels in isolated pace-maker cells of the mammalian heart. Nature303 (1983) 250–253.

    Article  CAS  PubMed  Google Scholar 

  60. Siegelbaum, S. A., Camardo, J. S., and Kandel, E. R., Serotonin and c-AMP close single K channels inAplysia sensory neurones. Nature299 (1982) 413–417.

    Article  CAS  PubMed  Google Scholar 

  61. Sigworth, F. J., Open channel noise. I. Noise in acetylcholine receptor currents suggests conformational fluctuations. Biophys. J.47 (1985) 709–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sigworth, F. J., and Neher, E., Single Na channel currents observed in cultured rat muscle cells. Nature287 (1980) 447–449.

    Article  CAS  PubMed  Google Scholar 

  63. Won, B. S., Lecar, H., and Adler, M., Single calcium-dependent potassium channels in clonal anterior pituitary cells. Biophys. J.39 (1983) 313–317.

    Google Scholar 

  64. Yamamoto, D., and Yeh, J. Z., Kinetics of 9-Aminoacridine block of single Na channels. J. gen. Physiol.84 (1984) 361–378.

    Article  CAS  PubMed  Google Scholar 

  65. Yellen, G., Single Ca2+-activated nonselective cation channels in neuroblastoma. Nature296 (1982) 357–359.

    Article  CAS  PubMed  Google Scholar 

  66. Yellen, G., Ionic permeation and blockade in Ca2+-activated K channels of bovine chromaffin cells. J. gen. Physiol.84 (1984) 157–186.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franciolini, F. Patch clamp technique and biophysical study of membrane channels. Experientia 42, 589–594 (1986). https://doi.org/10.1007/BF01955551

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01955551

Key words

Navigation