Skip to main content
Log in

The locus coeruleus: actions of psychoactive drugs

  • Full Papers
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The locus coeruleus is one of the most thoroughly investigated mammalian brain areas. Its fibers innervate large parts of the neuraxis, in particular, areas involved in cognitive functions such as the cortex and the hippocampus. A role of locus coeruleus has been proposed in such processes as memory, the control of vigilance, blood pressure and others. Results obtained in this and other laboratories demonstrate that the firing rate of locus coeruleus neurons is affected by a great number of psychoactive agents such as antidepressants, minor tranquillizers, neuroleptics, psychostimulants and certain psychogeriatric drugs. We have attempted to correlate the data obtained on the cell bodies of locus coeruleus with studies reporting effects on terminal areas and thereby gain an overall view of the action of the above mentioned drugs on this cell system. The activity of noradrenergic neurons in locus coeruleus is thought to correlate with the level of cortical vigilance. Special emphasis is placed on the finding that a number of drugs which exert a positive effect on cognitive functions in man and animals increase the firing rate of the rat locus coeruleus neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adolfsson, R., Gottfries, C.G., Roos, B.E., and Winblad, B., Catecholamines in the human brain and aging. Scand. J. Soc. Med. Suppl.14 (1977) 97–107.

    Google Scholar 

  2. Amaral, D.G., and Foss, J.A., Locus coeruleus lesions and learning. Science188 (1975) 377–379.

    CAS  PubMed  Google Scholar 

  3. Anden, N.E., Butcher, S.G., Corrodi, H., Fuxe, K. and Ungerstedt, U., Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur. J. Pharmac.11 (1970) 303–314.

    CAS  Google Scholar 

  4. Aston-Jones, G. and Bloom, F.E., Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neuroscience8 (1981) 876–886.

    Google Scholar 

  5. Aston-Jones, G., and Bloom, F.E., Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci.8 (1981) 887–900.

    Google Scholar 

  6. Bartholini, G., Keller, H.H., and Pletscher, A., Effect of neuroleptic on endogenous norepinephrine in rat brain. Neuropharmacology12 (1973) 751–756.

    CAS  PubMed  Google Scholar 

  7. Berkowitz, B.A., Tarver, J.H., and Spector, S., Release of norepinephrine in the central nervous system by theophylline and caffeine. Eur. J. Pharmac.10 (1970) 64–71.

    CAS  Google Scholar 

  8. Bird, S.J., and Kuhar, M.J., Iontophoretic application of opiates to the locus coeruleus. Brain Res.122 (1977) 523–533.

    CAS  PubMed  Google Scholar 

  9. Carlsson, A., and Lindqvist, M., Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta pharmac. toxic.20 (1963) 140–144.

    CAS  Google Scholar 

  10. Carlsson, A., and Lindqvist, M., Effects of antidepressant agents on the synthesis of brain monoamines. J. neural Transm.43 (1978) 73–91.

    CAS  PubMed  Google Scholar 

  11. Cedarbaum, J.M., and Aghajanian, G.K., Catecholamine receptor on locus coeruleus neurons: pharmacological characterization. Eur. J. Pharmac.44 (1977) 375–385.

    CAS  Google Scholar 

  12. Chu, N., and Bloom, F.E., Activity patterns of catecholamine-containing pontine neurons in the dorsolateral tegmentum of unrestrained cats. J. Neurobiol.5 (1975) 527–544.

    Google Scholar 

  13. Clonet, D.H., and Ratner, M., Catecholamine biosynthesis in the brain of rats treated with morphine. Science168 (1970) 854–856.

    Google Scholar 

  14. Corrodi, A., Fuxe, K., Hammer, W., Sjoequist, F., and Ungerstedt, U., Oxotremorine and central monoamine neurons. Life Sci.6 (1967) 2556–2557.

    Google Scholar 

  15. Corrodi, H., Fuxe, K., and Hoekfelt, T., The effect of some psychoactive drugs on central monoamine metabolism. Eur. J. Pharmac.1 (1967) 363–368.

    CAS  Google Scholar 

  16. Corrodi, H., Fuxe, K., Lindbrink, P., and Olson, L., Minor tranquillizers, stress and central catecholamine neurons. Brain Res.29 (1971) 1–16.

    CAS  PubMed  Google Scholar 

  17. Engberg, G., and Svensson, T.H., Pharmacological analysis of a cholinergic receptor mediated regulation of brain norepinephrine neurons. J. neural Transm.49 (1980) 137–150.

    CAS  PubMed  Google Scholar 

  18. Engberg, G., and Svensson, T.H., Effect of nicotine on single cell activity in the noradrenergic nucleus locus coeruleus. Acta physiol. scand. Suppl.479 (1980) 31–34.

    Google Scholar 

  19. Faiers, A.A., and Mogenson, G.J., Electrophysiological identification of neurons in locus coeruleus. Exp. Neurol.53 (1976) 254–266.

    CAS  PubMed  Google Scholar 

  20. File, S.E., Deakin, J.F.W., Longdon, A., and Crow, T.J., An investigation of the role of the locus coeruleus in anxiety and agonistic behavior. Brain Res.169 (1979) 411–420.

    CAS  PubMed  Google Scholar 

  21. Foote, S., and Bloom, F.E., Activity of locus coeruleus neurons in the anaesthetized squirrel monkey; in: Catecholamines: Basic and Clinical Frontiers, 4th Int. Catecholamine Symposium, p. 335. Pacific Grove, California, 1978.

  22. Foote, S.L., Aston-Jones, G. and Bloom, F.E., Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. natl Acad. Sci. USA77 (1980) 3033–3037.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Freedman, R., Interactions of antipsychotic drugs with norepinephrine and cerebellar neuronal circuitry: implications for the psychobiology of psychosis. Biol. Psychiat.12 (1977) 181–197.

    CAS  PubMed  Google Scholar 

  24. Freedman, R., and Hoffer, B.J., Phenothiazine antagonism of the noradrenergic inhibition of cerebellar purkinje neurons. J. Neurobiol.6 (1975) 277–288.

    CAS  PubMed  Google Scholar 

  25. Friedman, D.P., and Horvath, F.E., Catecholaminergic involvement in phasic versus tonic electrocortical arousal. Brain Res.194 (1980) 572–577.

    CAS  PubMed  Google Scholar 

  26. Goldman, P.S., and Brown, R.M., Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience6 (1981) 177–187.

    Google Scholar 

  27. Graham, A., and Aghajanian, G.K., Effects of amphetamine on single cell activity in a catecholamine nucleus, the locus coeruleus. Nature234 (1971) 100–102.

    CAS  PubMed  Google Scholar 

  28. Grant, S.J., Huang, Y.H., and Redmond, D.E., Benzodiazepines attenuate single unit activity in the locus coeruleus. Life Sci.27 (1980) 2231–2236.

    CAS  PubMed  Google Scholar 

  29. Gyenet, P.G., and Aghajanian, G.K., ACh, substance P and metenkephalin in the locus coeruleus: pharmacological evidence for independent sites of action. Eur. J. Pharm.53 (1979) 319–328.

    Google Scholar 

  30. Hobson, J., McCartey, R., and Wyzinski, P., Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science189 (1975) 55–58.

    CAS  PubMed  Google Scholar 

  31. Huang, Y.H., Net effect of acute administration of desipramine on the locus coeruleus-hippocampal system. Life Sci.25 (1979) 739–746.

    CAS  PubMed  Google Scholar 

  32. Jones, B.E., Harper, S.T., and Halaris, A.E., Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Res.124 (1977) 473–496.

    CAS  PubMed  Google Scholar 

  33. Jouvet, M., The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergebn. Physiol.64 (1972) 166–307.

    CAS  PubMed  Google Scholar 

  34. Kazik, T., Norepinephrine synthesis and turnover in the brain: acceleration by physostigmine; in: Frontiers in Catecholamine Research, pp. 897–899. Eds E. Usdin and S. Snyder. Pergamon Press, New York 1973.

    Google Scholar 

  35. Keller, H.H., Bartholini, G., and Pletscher, A., Increase of 3-methoxy-4-hydroxyphenylethylene glycol in rat brain by neuroleptic drugs. Eur. J. Pharmac.23 (1973) 183–186.

    CAS  Google Scholar 

  36. Koella, W.P., Betaadrenerge Blocker und Schlaf; in: Beta-blocker und Zentralnervensystem, Int. Symp. St. Moritz, pp. 177–186. Huber, Bern 1976.

    Google Scholar 

  37. Loh, H.H., Hitzemann, R.J., and Way, E.L., Effect of acute morphine administration on the metabolism of brain catecholamines. Life Sci.12 (1973) 33–41.

    CAS  Google Scholar 

  38. Mason, S.T., Noradrenaline and selective attention: a review of the model and the evidence. Life Sci.27 (1980) 617–631.

    CAS  PubMed  Google Scholar 

  39. Mason, S.T., and Fibiger, H.C., 6-OHDA lesion of the dorsal noradrenergic bundle alters extinction of passive avoidance. Brain Res.152 (1978) 209–214.

    CAS  PubMed  Google Scholar 

  40. Mason, S.T., and Fibiger, H.C., Evidence for a role of brain noradrenaline in attention and stimulus sampling. Brain Res.159 (1978) 421–426.

    CAS  PubMed  Google Scholar 

  41. Mason, S.T., and Iversen, S.D., Reward, attention and the dorsal noradrenergic bundle. Brain Res.150 (1978) 135–148.

    CAS  PubMed  Google Scholar 

  42. Nybaeck, H.V., Walters, J.R., and Aghajanian, G.K., Tricyclic antidepressants: effects on the firing rate of brain noradrenergic neurons. Eur. J. Pharmac.32 (1975) 302–312.

    Google Scholar 

  43. Olpe, H.R., and Steinmann, M.W., The activating action of vincamine, piracetam and hydergine on the activity of the noradrenergic neurons of the locus coeruleus. Behav. Neur. Biol.33 (1981) 249–251.

    CAS  Google Scholar 

  44. Olpe, H.R., and Steinmann, M.W., Age-related decline in the activity of noradrenergic neurons of the rat locus coeruleus. Brain Res.251 (1982) 174–176.

    CAS  PubMed  Google Scholar 

  45. Pepper, C.M., and Henderson, G., Opiates and opioid peptides hyperpolarize locus coeruleus neurons in vitro. Science209 (1980) 394–396.

    CAS  PubMed  Google Scholar 

  46. Phillis, J.W., Edstrom, J.P., Kostopoulos, G.K., and Kirkpatrick, J.R., Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex. Can. J. Physiol. Pharmac.57 (1979) 1289–1312.

    CAS  Google Scholar 

  47. Rochette, L., Bralet, A.M., and Bralet, J., Influence de la clonidine et la libération de la noradrénaline dans différentes structures cérébrales du rat. J. Pharmac., Paris,5 (1970) 209–220.

    Google Scholar 

  48. Scuvée-Moreau, J.J., and Dresse, A.E., Effect of various antidepressant drugs on the spontaneous firing rate of locus coeruleus and raphe dorsalis neurons of the rat. Eur. J. Pharmac.57 (1979) 219–225.

    Google Scholar 

  49. Smith, C.B., Sheldon, M.I., Bednarczyk, J.H., and Villareal, J.E., Morphine-induced incorporation of14C-tyrosine into14C-dopamine and14C-norepinephrine in the mouse brain: antagonism by naloxone and tolerance. J. Pharmac. exp. Ther.180 (1972) 547–557.

    CAS  Google Scholar 

  50. Snyder, S.H., Adenosine receptors and the actions of methylxanthines. TINS4 (1981) 242–244.

    CAS  Google Scholar 

  51. Sonto, M., Monti, J.M., and Altier, H., Effects of clozapine on the activity of central dopaminergic and noradrenergic neurons. Pharmac. Biochem. Behav.10 (1979) 5–9.

    Google Scholar 

  52. Sugrue, M.F., Effects of morphine and pentazocine on the turnover of noradrenaline and dopamine in various regions of the rat brain. Br. J. Pharmac.47 (1973) 644P.

    CAS  Google Scholar 

  53. Svensson, T.H., Bunney, B.S., and Aghajanian, G.K., Inhibition of both noradrenergic and serotonergic neurons in brain by the alpha-adrenergic agonist clonidine. Brain Res.92 (1975) 291–306.

    CAS  PubMed  Google Scholar 

  54. Svensson, T.H., and Usdin, T., Feedback inhibition of brain noradrenaline neurons by tricyclic antidepressants: alpha-receptor mediation. Science202 (1978) 1089–1091.

    CAS  PubMed  Google Scholar 

  55. Taylor, K.M., and Laverty, R., The effect of chlordiazepoxide, diazepam and nitrazepam on catecholamine metabolism in regions of the rat brain. Eur. J. Pharmac.8 (1969) 296–301.

    CAS  Google Scholar 

  56. Van Dongen, P.A.M., The human locus coeruleus in neurology and psychiatry. Prog. Neurobiol.17 (1981) 97–139.

    PubMed  Google Scholar 

  57. Waterhouse, B.D., and Woodward, D.J., Interaction of norepinephrine with cerebrocortical activity evoked by stimulation of somatosensory afferent pathways in the rat. Exp. Neurol.67 (1980) 11–34.

    CAS  PubMed  Google Scholar 

  58. Waterhouse, B.D., and Woodward, D.J., Interaction of norepinephrine with cerebrocortical activity evoked by stimulation of somatosensory afferent pathways in the rat. Exp. Neurol.67, (1980) 11–34.

    CAS  PubMed  Google Scholar 

  59. Waterhouse, B.D., Morris, H.C., and Woodward, D.J., Alpha-receptor mediated facilitation of somatosensory cortical neuronal responses to excitatory synaptic inputs and iontophoretically applied acetylcholine. Neuropharmacology20 (1981) 907–920.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olpe, H.R., Jones, R.S.G. & Steinmann, M.W. The locus coeruleus: actions of psychoactive drugs. Experientia 39, 242–249 (1983). https://doi.org/10.1007/BF01955287

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01955287

Keywords

Navigation