Skip to main content
Log in

Cyclic variation pattern of cerebral blood flow velocity and postconceptional age

  • Neonatology
  • Original Paper
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

In preterm neonates, the risk for intracerebral haemorrhage is linked to immaturity of cerebral autoregulation. The preterm's 2–5/min cyclic variation pattern of cerebral blood flow velocity is thought to reflect the degree of immaturity of autoregulation — a speculation to be tested. In a cross-sectional study 15 infants (gestational age 26–40 weeks, postconceptional age (PCA) 26–42 weeks, age 1–99 days were investigated. We performed a 10 min pulsed Doppler tracing on an internal carotid artery by means of a computer controlled 5 MHz Duplex device. Systolic velocity (Vs) was recorded pulse by pulse. After appropriate data transformation, in all infants the Fast Fourier Transform of the time course of Vs revealed the presence of a 2–5/min cyclic variation pattern (one sample z-test,P<0.0001). There was no significant correlation between proportionate spectral power of the 2–5/min frequency band and either PCA (r=0.23,P=0.42) or age (r=0.41,P=0.13). Between 26 and 42 weeks PCA, the cycling phenomenon is constant thus not reflecting cerebral maturation, and its presence does not mean immaturity of cerebral autoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR :

autoregulation

BW :

birth weight

CBF :

cerebral blood flow

CBFV :

cerebral blood flow velocity

CBFV-O :

cerebral blood flow velocity oscillation

GA :

gestational age

LF :

low frequency

PCA :

postconceptional age

PIVH :

peri-intraventricular haemorrhage

PNA :

postnatal age

PVL :

periventricular leucomalacia

Vs :

systolic velocity

References

  1. Anthony MY, Evans DH, Levene MI (1991) Cyclical variations in cerebral blood flow velocity. Arch Dis Child 66: 12–16

    PubMed  Google Scholar 

  2. Baldzer K, Dykes FD, Jones SA, Brogan M, Carrigan TA, Giddens DP (1989) Heart rate variability analysis in full-term infants: spectral indices of neonatal cardiorespiratory control. Pediatr Res 26: 188–195

    PubMed  Google Scholar 

  3. Bender E (1972) Messen-Regeln-Steuern. Fischer Taschenbuch Verlag, Frankfurt a.M., pp 96–105

    Google Scholar 

  4. Cowan F (1983) Cerebral blood flow velocity in the sleeping normal newborn infant. Studies on the cerebral circulation of the newborn infant. (Thesis) Oslo: A/S Holstad-Trykk

    Google Scholar 

  5. Cowan F, Thoresen M (1987) The effect of intermittent positive-pressure ventilation on cerebral arterial and venous blood velocities in the newborn infant. Acta Pediatr Scand 76: 239–247

    Google Scholar 

  6. Coughtrey H, Rennie JM, Evans DA (1992) Postnatal evolution of slow variability in cerebral blood flow velocity. Arch Dis Child 67: 412–415

    PubMed  Google Scholar 

  7. Elligsen I, Hauge A, Nicolaysen M, Thoresen M, Walloe L (1987) Changes in human cerebral blood flow due to step changes inPaO2 andPaCO2. Acta Physiol Scand 129: 157–163

    PubMed  Google Scholar 

  8. Hauge A, Thoresen M, Walloe L (1980) Changes in cerebral blood flow during hyperventilation and CO2-breathing measured transcutaneously in humans by a bedirectional, pulsed, ultrasound Doppler blood velocity meter. Acta Physiol Scand 110: 167–173

    PubMed  Google Scholar 

  9. Hyndman BW (1974) The role of rhythms in homeostasis. Kybernetik 15: 227–236

    PubMed  Google Scholar 

  10. Hyndman BW, Kitney RI, McSayers BA (1971) Spontaneous rhythms in physiological control systems. Nature 233: 339–341

    PubMed  Google Scholar 

  11. Kitney RI (1974) An analysis of the nonlinear behaviour of the human thermal vasomotor control system. J Theor Biol 52: 231–248

    Google Scholar 

  12. Kitney RI (1979) A nonlinear model for studying oscillations in the blood pressure control system. J Biomed Eng 1: 89–90

    PubMed  Google Scholar 

  13. Klingelhöfer J, Sander D (1993) Transcranial Doppler ultrasonography in sleep. In: Babikian VL, Wechsler LR (eds) Transcranial Doppler ultrasonography. Mosby. St. Louis, pp 150–159

    Google Scholar 

  14. Lou HC, Lassen NA, Friis-Hansen B (1979) Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J Pediatr 94: 118–121

    PubMed  Google Scholar 

  15. Mautner-Huppert D, Haberl RL, Dirnagl U, Villringer A, Schmiedek P, Einhaupl K (1989) B-waves in healthy persons. Neurol Res 11: 194–196

    PubMed  Google Scholar 

  16. Menke J, Michel E, Rabe H, Bresser BW, Grohs B, Schmidt RM, Jorch G (1993) Simultaneous influence of blood pressure, PCO2 andPO2 on cerebral blood flow velocity in preterm infants less than 33 weeks gestation. Pediatr Res 34: 173–177

    PubMed  Google Scholar 

  17. Miall-Allen VM, Vries LS de, Dubowitz LMS, Whitelow AGL (1989) Blood-pressure fluctuation and intraventricular hemorrhage in the preterm infant of less than 31 weeks' gestation. Pediatrics 83 (5): 657–661

    PubMed  Google Scholar 

  18. Michel E, Zernikow B, Rabe H, Jorch G (1993) Adaptive multipurpose probe fixation derice for use on newborns. Ultrasound Med Biol 19(7): 581–586

    PubMed  Google Scholar 

  19. Minorsky N (1958) Dynamics of nonlinear mechanics. The theory of oscillations. John Wiley, New York, pp 152–178

    Google Scholar 

  20. Mohler RR (1987) Controls, bilinear systems. In: Meyers RA (ed) Encyclopedia of physical science and technology Vol 3. Academic Press, Orlando, pp 627–643

    Google Scholar 

  21. Newell DM, Aaslid R, Stooss R, Reulen HJ (1992) The relationship of blood flow velocity fluctuations to intracranial pressure B waves. J Neurosurg 76: 415–421

    PubMed  Google Scholar 

  22. Oppenheim AV and Willsky AS (1992) Signale und Systeme. VCH, Weinheim, Germany

    Google Scholar 

  23. Perlman JM, McMenamin JB, Volpe JJ (1983) Fluctuating cerebral blood-flow velocity in respiratory-distress syndrom: relation to the development of intraventricular hemorrhage. N Engl J Med 309: 204–209

    PubMed  Google Scholar 

  24. Perlman JM, Godman S, Kreusser KL, Volpe JJ (1985) Reduction in intraventricular hemorrhage by elimination of fluctuating cerebral blood-flow velocity in preterm infants with respiratory distress syndrom. N Engl J Med 312: 1353–1357

    PubMed  Google Scholar 

  25. Perry EH, Bada HS, Ray JD, Korones SB, Arheart K, Magill HL (1990) Blood pressure increases, birth weight dependent stability boundary, and intraventricular hemorrhage. Pediatrics 85: 727–732

    PubMed  Google Scholar 

  26. Rabe H, Grohs B, Bresser BW, Jorch G (1990) Continuous Doppler sonography: a new method of monitoring cerebral circulation in very low birthweight infants. Klin Paediatr 202: 383–386

    Google Scholar 

  27. Shott S (1990) Statistics for health professionals. Saunders, Philadelphia, pp 106–109

    Google Scholar 

  28. Volpe JJ (1989) Intraventricular hemorrhage in the premature infant—current concepts. Part 1. Ann Neurol 25(1): 3–11

    PubMed  Google Scholar 

  29. Volpe JJ (1990) Brain injury in the premature infant: Is it preventable? Pediatr Res 27 [Suppl]: 28–33

    Google Scholar 

  30. Zernikow B, Michel E, Kohlmann G, Steck J, Schmitt RM, Jorch G (1994) Cerebral autoregulation of preterm neonates — a non-linear control system? Arch Dis Child 70: F166-F173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, E., Zernikow, B., Steck, J. et al. Cyclic variation pattern of cerebral blood flow velocity and postconceptional age. Eur J Pediatr 153, 751–755 (1994). https://doi.org/10.1007/BF01954493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01954493

Key words

Navigation