Skip to main content
Log in

Reflections on the ambivalent helix

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The helix is nature's favourite shape. Because of its elementary geometry and distinctive appearance it is also the clearest instance of an enantiomorphic object-a helix and its mirror image are identical in all respects except their screw sense. This is a distinction that can be ignored from the points of view of pure geometry and pure group theory18 but any helical structure is actually available as either or both hands.

Whether in nature helices do occur as just one hand, or both, is one of the best-perhaps the best-puzzles of the science of form. In this short review I look at a few examples of naturally occurring helices, some where only one hand is found, some where both are commonly found, and perhaps the most interesting examples in biological terms-those where both are found but one hand is very much rarer than the other. I review what mechanisms-physico-chemical, genetic, evolutionary-underlie the different manifestations of left- and right-handedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Arnott, S., Chandrasekaran, R., Hukins, D. W. L., Smith, P. J. C., and Watts, L., Structural details of a double helix observed for DNA's containing alternating purine and pyrimidine sequences. J. molec. Biol.88 (1974) 523–533.

    Article  CAS  PubMed  Google Scholar 

  2. Bergey's Manual of Systematic Bacteriology, 1st edn. (This replaced the editions up to the eighth, of Bergey's Manual of Determinative Bacteriology.) Eds N. R. Krieg and J. G. Holt. (1984).

  3. Bijvoet, J. M., Peerderman, A. F., and van Bommel, A. J., Determination of the absolute configuration of optically active compounds by means of X-rays. Nature168 (1951) 271–272.

    Article  CAS  Google Scholar 

  4. Boycott, A. E., Diver, C., Garstang, S. L., and Turner, F. M., The inheritance of sinistrality inLimnaea peregra. Phil. Trans. R. Soc. London B219 (1930) 219–251.

    Google Scholar 

  5. Bradbury, E. M., Downie, A. R., Elliott, A., and Hanby, W.E., The stability and screw sense of the α-helix in poly-β-benzyl-L-aspartate. Proc. R. Soc. A259 (1960) 110–128.

    CAS  Google Scholar 

  6. Bragg, Sir Lawrence, Kendrew, J. C., and Perutz, M. F., Polypeptide chain configurations in crystalline proteins. Proc. R. Soc. A203 (1956) 321–357.

    Google Scholar 

  7. Bryan, R. K., Bansal, M., Folkhard, W., Nave, C., and Marvin, D. A., Maximum entropy calculation of the electron density at 4Å resolution of Pf1 filamentous bacteriophage. Proc. natl Acad. Sci.80 (1983) 4728–4731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Butler, P. J. G., The current picture of the structure and assembly of tobacco mosaic virus. J. gen. Virol.65 (1984) 253–279.

    Article  CAS  PubMed  Google Scholar 

  9. Chasey, D., Left-handed subunit helix in flagellar microtubules. Nature248, (1974) 611–612.

    Article  CAS  PubMed  Google Scholar 

  10. Chothia, C., Levitt, M., and Richardson, D., Helix to helix packing in proteins. J. molec. Biol.145 (1981) 215–250.

    Article  CAS  PubMed  Google Scholar 

  11. Clarke, B., and Murray, J., Ecological genetics and speciation in land snails of the genusPartula. Biol. J. Linn. Soc.1 (1969) 31–42.

    Article  Google Scholar 

  12. Coakley, M. E., and Brown, N. A., Tissue oxygen as a determinant of axially asymmetric tetratologic responses. Misonidazole as a marker for hypoxic cells. Human Toxic.5 (1986) 404.

    Google Scholar 

  13. Cohen, C., Optical rotation and polypeptide chain configuration in proteins. Nature175 (1955) 129–130.

    Article  CAS  PubMed  Google Scholar 

  14. Cohen, C., and Parry, D. A. D. α-helical coiled coils—a widespread motif in proteins. Trends biochem. Sci.6 (1986) 245–248.

    Article  Google Scholar 

  15. Conklin, E. G., The cause of inverse symmetry. Anat. Anz.23 (1903) 577–588.

    Google Scholar 

  16. Cook, T. A., The Curves of Life. Constable and Co. London 1914, republished by Dover 1979.

    Google Scholar 

  17. Costello, D. P., and Henley, C., Spiralian development: a perspective. Am. Zool.16 (1976) 277–291.

    Article  Google Scholar 

  18. Coxeter, H. S. M., An Introduction to Geometry, 2nd edn. John Wiley and Sons, New York 1969.

    Google Scholar 

  19. Crane, H. R., Principles and problems of biological growth. The scient. Mon.6 (1950) 376–389.

    Google Scholar 

  20. Crick, F. H. C., The packing of α-helices: simple coiled coils. Acta crystallog.6 (1953) 689–697.

    Article  CAS  Google Scholar 

  21. Crick, F. H. C., and Watson, J. D., The complementary structure of deoxyribonucleic acid. Proc. R. Soc.223 (1954) 89–96.

    Google Scholar 

  22. Davis, T. A., Right-handed, left-handed and neutral palms. Principes (J. Palm Society)15 (1971) 63–68.

    Google Scholar 

  23. Dickerson, R. E., Drew, H. R., Conner, B. N., Wing, R. M., Fratini, A. V., and Kopka, M. L., The anatomy of A-, B- and Z- DNA. Science216 (1982) 475–485.

    Article  CAS  PubMed  Google Scholar 

  24. Elliott, A., Fraser, R. D. B., and MacRae T. P., The X-ray diffraction patterns of poly-γ-benzyl-glutamate. J. molec. Biol.11 (1965) 821–828.

    Article  CAS  PubMed  Google Scholar 

  25. Elliott, A., and Malcolm, B. R., Absolute configuration and optical rotation of folded (α) polypeptides. Nature178 (1956) 912.

    Article  CAS  Google Scholar 

  26. Favre, D., Thwaites, J. J., and Mendelson, N. H., Kinetic studies of temperature-induced helix hand inversion inBacillus subtilis macrofibres. J. Bact.164 (1985) 1136–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finch, J. T., The hand of the helix of tobacco mosaic virus. J. molec. Biol.66 (1972) 219–294.

    Article  Google Scholar 

  28. Fischer, P., and Bouvier, E. L., Recherche et considération sur l'asymetrie des mollusques univalves. J. Concyl.40 (1892) 117–207.

    Google Scholar 

  29. Freeman, G., and Lundelius, J. W., The developmental genetics of dextrality and sinistrality in the gastropod,Lymnaea peregra. Wilhelm Roux's Archs191 (1982) 69–83.

    Article  Google Scholar 

  30. Frei, E., and Preston, R. D., Cell wall organisation and wall growth in the filamentous green algaeCladophora andChaetomorpha. Proc. R. Soc. B154 (1961) 70–94.

    Google Scholar 

  31. Frondel, C., Characters of quartz fibres. Am. Mineralog.63 (1978) 17–27.

    CAS  Google Scholar 

  32. Fuller, W., Wilkins, M. H. F., Wilson, H. R., and Hamilton, L. D., The molecular configuration of deoxyribonucleic acid. J. molec. Biol.12 (1965) 60–80.

    Article  CAS  PubMed  Google Scholar 

  33. Gardner, M., The Wasp in a Wig. Lewis Carroll Society of North America and Macmillan, London 1977.

    Google Scholar 

  34. Gould, S. J., The sinister and the trivial. Nat Hist.94 (1985) 17–26.

    Google Scholar 

  35. Gould, S. J., Young, N. D., and Kasson, W., The consequences of being different: sinistral coiling inCerion. Evolution39 (1985) 1364–1379.

    Article  PubMed  Google Scholar 

  36. Gunning, B. E. S., Hughes, J. E., and Hardham, A. R., Formative and proliferative cell divisions, cell differentiation and developmental changes in the meristens of azolla roots. Planta143 (1978) 121–144.

    Article  CAS  PubMed  Google Scholar 

  37. Heitz, F., Lotz, B., and Spach, G., α DL and π DL helices of alternating poly-γ-benzyl-D-L-glutamate. J. molec. Biol.92 (1975) 1–13.

    Article  CAS  PubMed  Google Scholar 

  38. Hodgkin, D. C., and Riley, D. P., Some ancient history of protein X-ray crystallography. International Congress of Crystallography, Moscow 1966.

  39. Hummel, K. P., and Chapman, D. B., Visceral inversion and associated anomalies in the mouse. J. Hered.50 (1959) 9–13.

    Article  Google Scholar 

  40. Johnson, M. S., Polymorphism for direction of coil inPartula suturalis: behavioural isolation and positive frequency dependent selection. Hered.49 (1982) 145–151.

    Article  Google Scholar 

  41. Johnson, M. S., Adaptation and rules of form: chirality and shape inPartula suturalis. Evolution41 (1987) 672–682.

    Article  CAS  PubMed  Google Scholar 

  42. Joyce, G. F., Visser, G. M., van Boeckel, C. A. A., van Boom, J. H., Argel, L. E., and van Westrenen, J., Chiral selection in poly (C)-directed synthesis of oligo (C). Nature310 (1984) 602–604.

    Article  CAS  PubMed  Google Scholar 

  43. Kabsch, W., and Sander, C., Dictionary of secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers22 (1983) 2577–2637.

    Article  CAS  PubMed  Google Scholar 

  44. Knight, J. B., Primitive fossil gastropods and their bearing on gastropod classification. Smithsonian misc. Coll.117 (13) (1952) 1–56.

    Google Scholar 

  45. Knight-Jones, P., New species and a new subgenus of spirorbinal (serpulidae: polychaeta) from Kenya. J. Zool., London166 (1972) 1–18.

    Article  Google Scholar 

  46. Koeppe, R. F., Hodgson, K. O., and Stryer, L., Helical channels in crystals of gramicidin A and of a cesium-gramicidin A complex: an X-ray diffraction study. J. molec. Biol.121 (1978) 41–54.

    Article  CAS  PubMed  Google Scholar 

  47. Layton, W. M. Jr., Random determination of a developmental process. J. Hered.67 (1976) 336–338.

    Article  PubMed  Google Scholar 

  48. Marvin, D. A., and Wachtel, E. J., Structure and assembly of filamentous bacterial viruses. Nature253 (1975) 19–23.

    Article  CAS  PubMed  Google Scholar 

  49. Mason, S., Biomolecular handedness. Chem. Brit.21 (1985) 538–545.

    CAS  Google Scholar 

  50. Matthews, B. W., Weaver, L. H., and Kesten, W. R., The conformation of thermolysin. J. biol. Chem.249 (1974) 8030–8044.

    Article  CAS  PubMed  Google Scholar 

  51. McGavin, S., The handedness and chirality of biological structure at the molecular and at higher levels of structural organisation. Biosystems8 (1976) 147–152.

    Article  CAS  PubMed  Google Scholar 

  52. McManus, J. C., Handedness in twins: a critical review. Neuropsychologia18 (1980) 347–355.

    Article  CAS  PubMed  Google Scholar 

  53. Michel, H., Characterisation and crystal packing of three dimensional bacteriorhodopsin crystals. EMBO J.1 (1982) 1267–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mitchison, G. J., Phyllotaxis and the Fibonacci series. Science196 (1977) 270–275.

    Article  CAS  PubMed  Google Scholar 

  55. Mitsui, Y., Langridge, R., Shortle, B. E., Cantor, C. R., Grant, R. C., Kodama, M., and Wells, R. D., Physical and enzymatic studies in Poly d (I-C). Poly d (I-C), an unusual double helical DNA. Nature, Lond.228 (1970) 1116–1169.

    Article  Google Scholar 

  56. Nanney, D. L., The ciliates and cytoplasm. J. Hered.74 (1983) 163–170.

    Article  Google Scholar 

  57. Needham, J., Order and Life Yale University Press, New Haven 1936.

    Google Scholar 

  58. Nelsen, F. M., Frankel, J., and Jenkins, L. M., Non-genic inheritance of cellular handedness. Development (1989) in press.

  59. Neville, A. C., Animal Asymmetry, p. 20–21. Edward Arnold 1976.

  60. Pauling, L., The Nature of the Chemical Bond, 3rd edn, p. 500. Cornell University Press and Oxford University Press 1960.

  61. Raup, D. M., Geometrical analysis of shell coiling: general problems. J. Paleont.40 (1966) 1178–1190.

    Google Scholar 

  62. Richardson, J. S., The anatomy and taxonomy of protein structure. Adv. Prot. Chem.34 (1981) 167–339.

    CAS  Google Scholar 

  63. Rijven, A. H. G., Randomness in the genesis of phyllotaxis. New Phytol.68 (1969) 377–386.

    Article  Google Scholar 

  64. Robertson, R., and Merill, A. S., Abnormal dextral hyperstrophy of post-larvalHeliacus. Veliger6 (1963) 76–79.

    Google Scholar 

  65. Saenger, W., Principles of Nucleic Acid Structure, pp. 97–104. Springer-Verlag, New York 1984.

    Book  Google Scholar 

  66. Seifriz, W., Twisted trees and the spiral habit. Science77 (1933) 50–51.

    Article  CAS  PubMed  Google Scholar 

  67. Sturtevant, A. H., Inheritance of direction of coiling inLimnaea. Science58 (1923) 269–270.

    Article  CAS  PubMed  Google Scholar 

  68. Tachibana, T., and Kambara, H., Enantiomorphism in the super helices of poly-γ-benzyl-glutamate. Kolloidzeitschrift and Z. Polymere219 (1967) 40–42.

    Article  CAS  Google Scholar 

  69. Thompson, D'Arcy, W., On Growth and Form. Cambridge University Press 1917.

  70. Vermeij, G. J., Evolution and distribution of left-handed and planispiral coiling in snails. Nature254 (1975) 419–420.

    Article  Google Scholar 

  71. Wagner, I., and Musso, H., New naturally occurring amino acids. Angew. Chem. (Int. Ed. Engl.)22 (1983) 816–828.

    Article  Google Scholar 

  72. Wainwright, S. A., Vosburgh, F., and Hebrank, J. H., Shark skin: function in locomotion. Science202 (1976) 747–749.

    Article  Google Scholar 

  73. Waterkeyn, L., Light microscopy of the cotton fibre in Cotton Fibres: Their Development and Properties. (Technical monograph from the Belgian Cotton Research Group.) International Institute for Cotton, Manchester 1985.

    Google Scholar 

  74. Watson, J. D., and Crick, F. H. C., A structure for deoxyribose nucleic acid. Nature171 (1953) 737.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galloway, J.W. Reflections on the ambivalent helix. Experientia 45, 859–872 (1989). https://doi.org/10.1007/BF01954060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01954060

Key words

Navigation