Skip to main content
Log in

The Durand-Kerner polynomials roots-finding method in case of multiple roots

  • Part II Numerical Mathematics
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The convergence of the Durand-Kerner algorithm is quadratic in case of simple roots but only linear in case of multiple roots. This paper shows that, at each step, the mean of the components converging to the same root approaches it with an error proportional to the square of the error at the previous step. Since it is also shown that it is possible to estimate the multiplicity order of the roots during the algorithm, a modification of the Durand-Kerner iteration is proposed to preserve a quadratic-like convergence even in case of multiple zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Aberth:Iteration method for finding all zeros of a polynomial simultaneously, Math. Comp. 27, 122, 339–344 (1973).

    Google Scholar 

  2. G. Alefeld and J. Herzberger:On the convergence speed of some algorithms for the simultaneous approximation of polynomials roots, SIAM Journ. Num. Anal. 11, 2, 237–243 (1974).

    Google Scholar 

  3. E. D. Angelova and K. I. Semerdziev:Methods for the simultaneous approximate derivation of the roots of algebraic, trigonometric and exponential equations, USRR Comput. Maths. Math. Phys. 22, 1, 226–232 (1982).

    Google Scholar 

  4. D. Bini:Complexity of parallel polynomial computations, inInternational Meeting on Parallel Computing, 115–127 (1988).

  5. M. L. Lo Cascio, L. Pasquini, D. Trigiante:Simultaneous determination of polynomial complex roots and multiplicities: algorithm and problems involved. Tech. rep. Dip. di Metodi e Modelli Matematici per le Scienze Applicate, Univ. Roma, La Sapienza.

  6. M. Cosnard and P. Fraigniaud:Asynchronous Durand-Kerner and Aberth polynomial root finding methods on a distributed memory multicomputer, in Proceedings of Parallel Computing 98, Leiden (1989).

  7. M. Cosnard and P. Fraigniaud:Finding the roots of a polynomial on a MIMD multicomputer. To appear in Parallel Computing.

  8. E. Durand:Solutions numériques des équations algébriques, Tome 1: Equations du type F(x), Masson, Paris, (1960).

    Google Scholar 

  9. L. W. Ehrlich:A modified Newton method for polynomials, Comm. ACM, 10, 2, 107–108 (1967).

    Google Scholar 

  10. M. R. Farmer and G. Loizou:An algorithm for the total, or partial, factorization of a polynomial, Math. Proc. Camb. Phil. Soc. 82, 427–437 (1977).

    Google Scholar 

  11. M. W. Green, A. J. Korsak and M. C. Pease:Simultaneous iteration towards all roots of a complex polynomial, SIAM Rev. 18, 501–502 (1976).

    Google Scholar 

  12. H. Guggenheimer:Initial approximations in Durand-Kerner's root finding method, BIT 26, 537–539 (1986).

    Google Scholar 

  13. F. Hoxha:Calcul simultané des racines d'un polynome complexe: contribution à l'algorithmique et mise en oeuvre sur un réseau de processeur. Thèse de l'institut National Polytechnique de Toulouse, (1988).

  14. I. O. Kerner:Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen, Numerische Mathematik 8, 290–294 (1966).

    Google Scholar 

  15. G. Kjellberg:Two observations on Durand-Kerner's root-finding method, BIT 24, 554–559 (1984).

    Google Scholar 

  16. I. L. Makrelov and K. I. Semerdziev:Methods of finding simultaneously all the roots of algebraic, trigonometric, and exponential equations, USRR Comput. Maths. Math. Phys. 24, 5, 99–105 (1984).

    Google Scholar 

  17. J. L. Nicolas and A. Schnitzel:Localisation des zeros de polynômes intervenant en théorie du signal, Research report, Dep. of Math. Univ. of Limoges, Limoges, France (1989).

    Google Scholar 

  18. L. Pasquini and D. Trigiante:A globally convergent method for simultaneously finding polynomial roots, Math. Comp., 44, 169, 135–149 (1985).

    Google Scholar 

  19. M. S. Petkovic and L. V. Stefanovic:On some iteration functions for the simultaneous computation of multiply complex polynomial zeros, BIT 27, 111–122 (1987).

    Google Scholar 

  20. L. B. Rall:Convergence of the Newton process to multiple solutions, Numerische Mathematik 9, 23–37 (1966).

    Google Scholar 

  21. T. A. Rice and L. H. Jamieson:A highly parallel algorithm for root extraction, IEEE Trans. on Comp. 28, 3, 443–449 (1989).

    Google Scholar 

  22. S. Smale:On the efficiency of algorithms of analysis, Technical Report Math. Dept., UC, Berkeley, Cal.

  23. T. Terano:On a global algorithm for algebraic equations, PhD Thesis, University of Tokyo, Information engineering course (1978).

  24. P. Weidner:The Durand-Kerner methods for trigonometric and exponential polynomials, Computing 40, 175–179 (1988).

    Google Scholar 

  25. W. Werner:On the simultaneous determination of polynomial roots, Lecture Notes in Mathematics, 1953, 188–202, Berlin Springer (1982).

  26. J. H. Wilkinson:The evaluation of the zeros of ill-conditioned polynomials. Part I and II, Numerische Mathematik 1, 150–166 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported in part by the Research Program C3 of the French CNRS and MEN, and by the Direction des Recherches et Etudes Techniques (DGA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraigniaud, P. The Durand-Kerner polynomials roots-finding method in case of multiple roots. BIT 31, 112–123 (1991). https://doi.org/10.1007/BF01952788

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952788

Subject Classifications

Key words

Navigation