Skip to main content
Log in

Cardiac and circulatory control in decapod Crustacea with comparisons to molluscs

  • Published:
Experientia Aims and scope Submit manuscript

Summary

In this review I will attempt to identify the circulatory requirements a decapod is likely to encounter and how the heart is controlled to meet these demands. The decapod heart has been designed as an autonomous system endowed with an intrinsic autorhythmic pacemaker ganglion. Muscle fibers are multiply-innervated and capable of producing regenerative action potentials. This vitally important organ has been designed to be nearly fail-safe. Stroke volume is more important than heart rate in determining cardiac output. Stretch sensitivity of the cardiac ganglion and of the myocardium as well as extrinsic nervous and hormonal modulation of the heart can all contribute to changes in stroke volume. It may be advantageous to an animal to switch the circulation between various vascular beds to meet changing perfusion demands. Neuronal and hormonal mechanisms have been identified which exert differential control of the cardioarterial valves, but it is not known whether switching does occur and if so whether these valves participate in the process. Changes in peripheral resistance can also redirect circulatory flow. The circulatory and ventilatory systems demonstrate coordinated rate changes which suggest that the heart is responding to meet changing ventilatory performance requirements. This coupling is controlled both by the hydrostatic pressure pulses generated within the branchial chambers and by common higher level nervous inputs. Comparisons of the cardiovascular systems of crustaceans and molluscs, based on the papers presented at this symposium, are high-lighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrowicz, J. S., The innervation of the heart of the Crustacea. I. Decapoda. Q. J. microsc. Sci.75 (1932) 181–249.

    Google Scholar 

  2. Alexandrowicz, J. S., and Carlisle, D. B., Some experiments on the function of the pericardial organs in Crustacea. J. mar. biol. Ass. U. K.32 (1953) 175–192.

    Google Scholar 

  3. Anderson, M., and Cooke, I. M., Neural activation of the heart of the lobsterHomarus americanus. J. exp. Biol.55 (1971) 449–468.

    CAS  PubMed  Google Scholar 

  4. Ashbly, E. A., and Larimer, J. L., Modification of cardiac and respiratory rhythms in crayfish following carbohydrate chemoreception. J. cell. comp. Physiol.65 (1965) 373–380.

    Google Scholar 

  5. Battelle, B. A., and Kravitz, E. A., Targets of octopamine action in the lobster: cyclic nucleotide changes and physiological effects in hemolymph, heart and exoskeletal muscle. J. Pharmac. exp. Ther.205 (1978) 438–448.

    CAS  Google Scholar 

  6. Belmarich, F. A., and Terwilliger, R. C., Isolation and identification of cardio-excitor hormone from the pericardial organs ofCancer borealis. Zool.6 (1966) 101–106.

    Google Scholar 

  7. Belman, B. W., Some aspects of the circulatory physiology of the spiny lobsterPanulirus interruptus. Mar. Biol.29 (1975) 295–305.

    Google Scholar 

  8. Benson, J. A., Burst reset and frequency control of the neuronal oscillators in the cardiac ganglion of the crab,Portunus sanguinolentus. J. exp. Biol.87 (1980) 285–313.

    CAS  PubMed  Google Scholar 

  9. Benson, J. A., Synaptic and regenerative responses of cardiac muscle fibres in the crab,Portunus sanguinolentus. J. comp. Physiol.143 (1981) 349–356.

    Google Scholar 

  10. Blatchford, J. G., Hemodynamics ofCardinus maenas (L.). Comp. Biochem. Physiol.39A (1971) 193–202.

    Google Scholar 

  11. Bullock, T. A., and Horridge, G. A., Structure and Function in the Nervous Systems of Invertebrates, pp. 988–997. W. H. Freeman and Co., San Francisco 1965.

    Google Scholar 

  12. Burggren, W., Pinder, A., McMahon, B., Wheathly, M., and Doyle, M., Ventilation, circulation and their interactions in the land crab,Cardiosoma guanhumi. J. exp. Biol.117 (1985) 133–154.

    Google Scholar 

  13. Butler, P. J., Taylor, E. W., and McMahon, B. R., Respiratory and circulatory changes in the lobster (Homarus vulgaris) during longterm exposure to moderate hypoxia. J. exp. Biol.73 (1978) 131–146.

    Google Scholar 

  14. Conant, F. S., and Clark, H. L., On the accelerator and inhibitory nerves to the crab's heart. J. exp. Biol.1 (1986) 341–347.

    Google Scholar 

  15. Conner, J. A., Burst activity and cellular interaction in the pacemaker ganglion of the lobster heart. J. exp. Biol.50 (1969) 275–295.

    Google Scholar 

  16. Cooke, I. M., Electrical activity and release of neurosecretory material in crab pericardial organs. Comp. Biochem. Physiol.13 (1964) 353–366.

    CAS  PubMed  Google Scholar 

  17. Cooke, I. M., The sites of action of pericardial organ extract and 5-hydroxytryptamine in the decapod crustacean heart. Am. Zool.6 (1966) 107–121.

    CAS  PubMed  Google Scholar 

  18. Cooke, I. M., and Goldstone, M. W., Fluorescence localization of monoamines in crab neurosecretory structures. J. exp. Biol.35 (1970) 651–668.

    Google Scholar 

  19. Cooke, I. M., and Hartline, D. K., Neurohormonal alteration of integrative properties of the cardiac ganglion of the lobsterHomarus americanus. J. exp. Biol.63 (1975) 33–52.

    CAS  PubMed  Google Scholar 

  20. Cooke, I. M., and Tazaki, K., Driver potentials isolated in crustacean cardiac ganglion cells by ligaturing. Soc. Neurosci. Abstr.5 (1979) 494.

    Google Scholar 

  21. Evans, P. D., Kravitz, E. A., and Talamo, B. R., Octopamine release at two points along lobster nerve trunks. J. Physiol.262 (1976) 71–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Field, L. H., and Larimer, J. L., The cardioregulatory system of crayfish: neuroanatomy and physiology. J. exp. Biol.62 (1975) 519–530.

    CAS  PubMed  Google Scholar 

  23. Florey, E., Studies on the nervous regulation of the heart beat in decapod Crustacea. J. gen. Physiol.43 (1960) 1061–1081.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Florey, E., and Rathmayer, M., The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustanceans: further evidence for a role as neurohormone. Comp. Biochem. Physiol.61C (1978) 229–237.

    CAS  Google Scholar 

  25. George, C. J., Nair, K. K., and Muthe, P. T., The pericardial membrane and its role in crustacean circulation. J. Anim. Morph. Physiol.2 (1955) 73–78.

    Google Scholar 

  26. Hagiwara, S., and Bullock, T. H., Intracellular potentials in pacemaker and integrative neurons of the lobster cardiac ganglion. J. cell. comp. Physiol.50 (1957) 35–47.

    Google Scholar 

  27. Hartline, D. K., Impulse identification and axon mapping of the nine neurons in the cardiac ganglion of the lobsterHomarus americanus. J. exp. Biol.47 (1967) 327–340.

    CAS  PubMed  Google Scholar 

  28. Hartline, D. K., Integrative neurophysiology of the lobster cardiac ganglion. Am. Zool.19 (1979) 53–65.

    Google Scholar 

  29. Hume, R. I., and Berlind, A., Heart and scaphognathite rate changes in a euryhaline crab,Carcinus maenas, exposed to dilute environmental medium. Biol. Bull.150 (1976) 241–254.

    CAS  PubMed  Google Scholar 

  30. Jorgensen, D., Bourne, G., Burnett, L., deFur, P., and McMahon, B., Circulatory function during hypoxia in the dungeness crab,Cancer magister. Am. Zool.22 (1982) 958.

    Google Scholar 

  31. Kihara, A., and Kuwasawa, K., A neuroanatomical and electrophysiological analysis of nervous regulation in the heart of an isopod crustacean,Bathynomus doederleini. J. comp. Physiol.154 (1984) 883–894.

    Google Scholar 

  32. Kihara, A., Kuwasawa, K., and Yazawa, T., Neural control of the cardio-arterial valves in an isopod crustacean,Bathynomus doederleini: excitatory and inhibitory junctional potentials. J. comp. Physiol.157 (1985) 529–536.

    Google Scholar 

  33. Kuramoto, T., and Ebara, A., Effects of perfusion pressure on the isolated heart of the lobster,Panulirus japonicus. J. exp. Biol.109 (1984) 121–140.

    Google Scholar 

  34. Kuramoto, T., and Ebara, A., Neurohormonal modulation of the cardiac outflow through the cardioarterial valve in the lobster. J. exp. Biol.111 (1984) 123–130.

    Google Scholar 

  35. Kuramoto, T., and Ebara, A., Effects of perfusion pressure on the bursting neurones in the intact or segmented cardiac ganglion of the lobster,Panulirus japonicus. J. Neurosci. Res.13 (1985) 569–580.

    CAS  PubMed  Google Scholar 

  36. Kuramoto, T., and Kuwasawa, K., Ganglionic activation of the myocardium of the lobster,Panulirus japonicus. J. comp. Physiol.139 (1980) 67–76.

    Google Scholar 

  37. Lemos, J. R., and Berlind, A., Cyclic adenosine monophosphate mediation of peptide neurohormone effects on the lobster cardiac ganglion. J. exp. Biol.90 (1981) 307–326.

    CAS  Google Scholar 

  38. Mangold, E., Studien zur Physiologie des Krebsherzens, besonders über eine aktive Funktion des ‘Pericard’ beiCancer pagurus. Z. vergl. Physiol.2 (1925) 184–208.

    Google Scholar 

  39. Mayeri, E., Functional organization of the cardiac ganglion of the lobster,Homarus americanus. J. gen. Physiol.62 (1973) 448–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Maynard, D. M., Activity in a crustacean ganglion. I. Cardioinhibition and acceleration inPanulirus argus. Biol. Bull.104 (1953) 156–170.

    Google Scholar 

  41. Maynard, D. M., Circulation and heart function, in: The Physiology of Crustacea, vol. 1, pp. 161–226. Eds. H. P. Wolvekamp and T. H. Waterman. Academic Press, New York 1960.

    Google Scholar 

  42. Maynard, D. M., Cardiac inhibition in decapod Crustacea, in: Nervous inhibition, pp. 144–178. Ed. E. Florey. Pergamon Press, New York 1961.

    Google Scholar 

  43. Maynard, D. M., and Welsh, J. H., Neurohormones of the pericardial organs of brachyuran Crustacea. J. Physiol.149 (1959) 215–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. McDonald, D. G., McMahon, B. R., and Wood, C. M., Patterns of heart and scaphognathite activity in the crabCancer magister. J. exp. Zool.202 (1977) 33–44.

    Google Scholar 

  45. McMahon, B. R., Physiological responses to reduced oxygen tension in aquatic animals. Am. Zool. (1988) in press.

  46. McMahon, B. R., and Wilkens, J. L., Ventilation, perfusion and oxygen consumption, in: The Biology of Crustacea, vol. 2, pp. 289–372. Eds L. H. Mantel and D. Bliss. Academic Press, New York 1983.

    Google Scholar 

  47. McMahon, B. R., McDonald, D. G., and Wood, C. M., Ventilation, oxygen uptake and haemolymph oxygen transport, following enforced exhausting activity in the dungeness crabCancer magister. J. exp. Biol.80 (1979) 271–285.

    Google Scholar 

  48. Miller, M. W., and Sullivan, R. E., Some effects of proctolin on the cardiac ganglion of the Maine lobster,Homarus americanus (Milne Edwards). J. Neurobiol.12 (1981) 629–639.

    CAS  PubMed  Google Scholar 

  49. Siwicki, K. K., and Bishop, C. A., Mapping of proctolin-like immunoreactivity in the nervous systems of lobster and crayfish. J. comp. Neurol.243 (1986) 435–453.

    CAS  PubMed  Google Scholar 

  50. Sullivan, R. E., Stimulus-coupled3H-serotonin release from identified neurosecretory fibers in the spiny lobster,Panulirus interruptus. Life Sci.22 (1978) 1429–1438.

    CAS  PubMed  Google Scholar 

  51. Sullivan, R. E., A proctolin-like peptide in crab pericardial organs. J. exp. Zool.210 (1979) 543–552.

    CAS  Google Scholar 

  52. Sullivan, R. E., and Miller, M. W., Dual effects of proctolin on the rhythmic burst activity of the cardiac ganglion. J. Neurobiol.15 (1984) 173–196.

    CAS  PubMed  Google Scholar 

  53. Sullivan, R. E., Friend, B. J., and Barker, D. L., Structure and function of spiny lobster ligamental nerve plexuses: evidence for synthesis, storage, and secretion of biogenic amines. J. Neurobiol.8 (1977) 581–605.

    CAS  PubMed  Google Scholar 

  54. Taylor, E. W., Control and coordination of ventilation and circulation in crustaceans: responses to hypoxia and exercise. J. exp. Biol.100 (1982) 289–319.

    Google Scholar 

  55. Taylor, E. W., Butler, P. J., and Sherlock, P. J., The respiratory and cardiovascular changes associated with the emersion response ofCarcinus maenas (L.) during environmental hypoxia, at three different temperatures. J. comp. Physiol.86 (1973) 95–115.

    Google Scholar 

  56. Taylor, H. H., and Greenaway, P., The role of the gills and branchiostegites in gas exchange in a bimodally breathing crab,Holthuisana transversa: evidence for a facultative change in the distribution of the respiratory circulation. J. exp. Biol.111 (1984) 103–121.

    Google Scholar 

  57. Tazaki, K., and Cooke, I. M., Spontancous electrical activity and interaction of large and small cells in cardiac ganglion of the crab,Portunus sanguinolentus. J. Neurobiol.42 (1979a) 975–999.

    CAS  Google Scholar 

  58. Tazaki, K., and Cooke, I. M., Isolation and characterization of slow, depolarizing responses of cardiac ganglion neurons in the crab,Portunus sanguinolentus. J. Neurobiol.42 (1979b) 1000–1021.

    CAS  Google Scholar 

  59. Terzuolo, C. A., and Bullock, T. H., Acceleration and inhibition in crustancean ganglion cells. Archs ital. Biol.96 (1958) 117–134.

    Google Scholar 

  60. Watson, W. H. III, and Hoshi, T., Proctolin induces rhythmic contractions and spikes inLimulus heart muscle. Am. J. Physiol.249 (1985) R490–495.

    CAS  PubMed  Google Scholar 

  61. Wiersma, C. A. G., and Novitski, E., The mechanism of the nervous regulation of the crayfish heart. J. exp. Biol.19 (1942) 225–265.

    Google Scholar 

  62. Wilkens, J. L., Respiratory and circulatory coordination in decapod crustaceans, in: Locomotion and Energetics in Arthropods, pp. 227–298. Eds C. F. Herreid II and C. R. Fourtner, Plenum Press, New York 1981.

    Google Scholar 

  63. Wilkens, J. L., Mercier, A. J., and Evans, J., Cardiac and ventilatory responses to stress and to neurohormonal modulators by the shore crab,Carcinus maenas. Comp. Biochem. Physiol.82C (1985) 337–343.

    CAS  Google Scholar 

  64. Wilkens, J. L., Wilkens, L. A., and McMahon, B. R., Central control of cardiac and scaphognathite pacemakers in the crab,Cancer magister. J. comp. Physiol.90 (1974) 89–104.

    Google Scholar 

  65. Yazawa, T., and Kuwasawa, K., The cardio-regulator nerves of the hermit crabs: anatomical and electrophysiological and identification of their distribution inside the heart. J. comp. Physiol.154A (1984) 871–881.

    Google Scholar 

  66. Yazawa, T., and Kuwasawa, K., The cardio-regulator nerves of hermit crabs: multimodal activation of the heart by the accelerator axons. J. comp. Physiol.155A (1984) 313–318.

    Google Scholar 

  67. Young, R. E., Correlated activities in the cardioregulator nerves and ventilatory system in the Norwegian lobster,Nephrops norvegicus (L.). Comp. Biochem. Physiol.61A (1978) 387–394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkens, J.L. Cardiac and circulatory control in decapod Crustacea with comparisons to molluscs. Experientia 43, 990–994 (1987). https://doi.org/10.1007/BF01952215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952215

Key words

Navigation