Skip to main content
Log in

Cardiac output in the Mollusca: Scope and regulation

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Different molluscan groups have evolved functionally specialised cardiovascular systems in response to varied behavioural and environmental demands, making the study of cardiovascular regulation in these animals a fascinating area for research. Currently, such research is frustrated by the lack of data on the in vivo performance of these systems, although, where examined, increased cardiac output appears to be accommodated by a change in stroke volume. This paper considers the in vivo regulation of cardiac output, primarily by extrapolating from in vivo experiments, and proposes the following three hypotheses for future study.

  1. 1.

    The increase in stroke volume is critically dependent on the phasic action of acetylcholine, expanding the end-diastolic volume of the ventricle for the same returning venous pressure.

  2. 2.

    Circulating cardioactive peptides will set the level of myocardial tone on a sliding scale, against which the action of both intrinsic and extrinsic factors are expressed.

  3. 3.

    In extreme cases, the inherent myogenicity of the heart may depend on the level of a circulating peptide. Here, the organ might be better described as humourogenic, rather than myogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourne, G. B., and Redmond, J. R., Hemodynamics of the pink abaloneHaliotus corrugata (Mollusca, Gastropoda) 1. Pressure relations and pressure gradients in the intact animal. J. exp. Zool.200 (1977) 9–16.

    Google Scholar 

  2. Devlin, C. L., The effect of three calcium antagonists on the molluscan cardioactive substances FMRFamide and 5-hydroxtryptamine. M. Sc. Thesis, University of Rhode Island, USA 1985.

    Google Scholar 

  3. Ellington, W. R., Cardiac energy metabolism in relation to work demand and habitat in bivalve and gastropod mollucs., in: Circulation, Respiration and Metabolism, pp. 356–366. Ed. R. Gilles. Springer-Verlag, Berlin, Heidelberg 1985.

    Google Scholar 

  4. Foti, L., Genoino, I. T., and Agnisola, G.,In vitro cardiac performance inOctopus vulgaris (Lam). Comp. Biochem. Physiol.82C (1985) 483–488.

    CAS  Google Scholar 

  5. Farrell, T., Cardiovascular and hemodynamic energetics of fishes. In: Circulation, Respiration and Metabolism, pp. 377–385. Ed. R. Gilles. Springer-Verlag, Berlin, Heidelberg 1985.

    Google Scholar 

  6. Getting, P. A., Neural control of behaviour in gastropods, in: The Mollusca, vol. 8 (1), pp. 269–334. Ed. A. O. D. Willows, Academic Press, New York, London 1985.

    Google Scholar 

  7. Greenberg, M. J.: Ex Bouillabaisse Lux: The charm of comparative physiology and biochemistry. Am. Zool.25 (1985) 737–749.

    Google Scholar 

  8. Greenberg, M. J., and Price, D. A., FMRFamide, a cardioexcitatory neuropeptide in molluscs: An agent in search of a mission. Am. Zool.19 (1979) 163–174.

    CAS  Google Scholar 

  9. Hill, R. B., Effects of 5-hydroxytryptamine on action potentials and on contractile force in the ventricle ofDolabella auricularia. J. exp. Biol.61 (1974) 529–539.

    CAS  PubMed  Google Scholar 

  10. Hill, R. B., and Irisawa, H., The immediate effect of changed perfusion pressure and subsequent adaption in the isolated ventricle of the marine gastropodRapana thomasiana (Prosobranchia). Life Sci.6 (1967) 1691–1696.

    CAS  PubMed  Google Scholar 

  11. Hill, R. B., and Yantorno, R. E., Inotropism and contracture in aplysiid ventricles as related to the action of neurohumors on the resting and action potentials of molluscan hearts. Am. Zool.19 (1979) 145–162.

    CAS  Google Scholar 

  12. Houlihan, D. F., Duthie, G. G., Smith, P. J. S., Wells, M. J., and Wells, J., Ventilation and circulation during exercise inOctopus vulgaris. J. Comp. Physiol.156 (1985) 683–689.

    Google Scholar 

  13. Irisawa, H., Kobayashi, M., and Matsubayashi, T., Action potentials of oyster myocardium. Jap. J. Physiol.11 (1961a) 162–168.

    CAS  Google Scholar 

  14. Jones, H. D., Hydrostatic pressures within the heart and pericardium ofPatella vulgata L. Comp. Biochem. Physiol.34 (1970) 263–272.

    CAS  PubMed  Google Scholar 

  15. Jones, H. D., The circulatory systems of gastropods and bivalves, in: The Mollusca, vol. 15 (2), pp. 189–238. Eds A. S. M. Saleuddin and K. M. Wilbur. Academic Press, New York/London 1983.

    Google Scholar 

  16. Kawakami, and Kobayashi, M., Pharmacological approach to the analysis of regulation of molluscan heart activity. Zool. Sci.1 (1984) 389–397.

    CAS  Google Scholar 

  17. Kiss, T., and S. Rozsa, K., Site of action of 5-hydroxytryptamine on the membrane of heart muscle cells ofHelix pomatia L. Ann. Biol. Tihany42 (1975) 61–72.

    CAS  Google Scholar 

  18. Koch, U. T., and Koester, J., Time sharing of heart power: Cardiovascular adaptions to food-arousal inAplysia. J. comp. Physiol.149 (1982) 31–42.

    Google Scholar 

  19. Koch, U. T., Koester, J., and Weiss, K. R., Neuronal mediation of cardiovascular effects of food arousal inAplysia. J. Neurophysiol.51 (1984) 126–135.

    CAS  PubMed  Google Scholar 

  20. Koester, J., Mayeri, E., Liebeswar, G., and Kandel, E. R., Neural control of circulation inAplysia. II Interneurons. J Neurophysiol.37 (1974) 476–496.

    CAS  PubMed  Google Scholar 

  21. Kuwasawa, K., Effects of ACh and IJPs on the av valve and the ventricle ofDolabella auricularia. Am. Zool.19 (1979) 129–143.

    CAS  Google Scholar 

  22. Kuwasawa, K., and Hill, R. B., Regulation of ventricular rhythmicity in the hearts of prosobranch gastropods, in: Neurobiology of Invertebrates: Mechanisms of Rhythm Regulation, pp. 143–165. Ed. J. Salanki. Akademiai Kiado, Budapest 1973.

    Google Scholar 

  23. Lehman, H. K., Price, D. A., and Greenberg, M. J., The FMRFamide-like peptide ofAplysia is FMRFamide. Biol. Bull.167 (1984) 460–466.

    CAS  PubMed  Google Scholar 

  24. Lever, J., and Boer, H. H. (Eds) Molluscan Neuroendocrinology. North-Holland, Amsterdam 1983.

    Google Scholar 

  25. Mountcastle, V. B. (Ed.), Medical Physiology, vol. 2. The C. V. Mosby Company, St. Louis 1974.

    Google Scholar 

  26. Nagle, G. T., The molluscan neuropeptide FMRFamide. Calcium-dependent release and blood levels inMacrocallista (Bivalvia). Life Sci30 (1982) 803–807.

    CAS  PubMed  Google Scholar 

  27. Nomura, H., the effects of stretching on the intracellular action potential from the cardiac muscle fibre of the marine mollusc,Dolabella auricula. Sci. Rep. Tokyo Kyoiku Daigaku11 (1963) 253–269.

    Google Scholar 

  28. Painter, S. D., FMRFamide inhibition of a molluscan heart is accompanied by increases in cyclic AMP. Neuropeptides3 (1982) 19–27.

    CAS  PubMed  Google Scholar 

  29. Painter S. D., and Greenberg, M. J., A survey of the responses of bivalve hearts to the molluscan neuropeptide FMRFamide and to 5-hydroxytryptamine. Biol. Bull162 (1982) 311–332.

    CAS  Google Scholar 

  30. Patterson, S. W., and Starling, E. H., Mechanical factors which determine the output of ventricles. J. Physiol., Lond.48 (1914) 357.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Price, D. A., and Greenberg, M. J., The structure of a molluscan cardioexcitatory neuropeptide. Science197 (1977) 670–671.

    CAS  PubMed  Google Scholar 

  32. Price, D. A., Cottrell, G. A., Doble, K. E., Greenberg, M. J., Jorenby, W., Lehman, H. K., and Riehm, J. P., A novel FMRFamide-related peptide inHelix: pQDPFLRFamide. Biol. Bull169 (1985) 256–266.

    CAS  Google Scholar 

  33. Skramlik, E., Über den Kreislauf bei den Weichtieren. Ergebn. Biol.18 (1941) 88–286.

    Google Scholar 

  34. Smith, P. J. S., Studies on the circulatory organs of the octopus,Eledone cirrhosa (Lam.). Ph.D. Thesis, University of Aberdeen, Scotland 1979.

    Google Scholar 

  35. Smith, P. J. S., The role of venous pressure in regulation of output from the heart of the octopus,Eledone cirrhosa (Lam.). J. exp. Biol.93 (1981) 243–255.

    Google Scholar 

  36. Smith, P. J. S., Molluscan circulation: Haemodynamics and the heart, in: Circulation, Respiration and Metabolism, pp. 344–355. Ed. R. Gilles. Springer-Verlag, Berlin, Heidelberg 1985a.

    Google Scholar 

  37. Smith, P. J. S., Cardiac performance in response to loading pressures for two molluscan species,Busycon canaliculatum (L.) (Gastropoda) andMercenaria mercenaria (L.) (Bivalvia). J. exp. Biol.119 (1985b) 301–320.

    Google Scholar 

  38. Smith, P. J. S., Energetics of the isolatedAplysia heart in response to 5-HT and FMRFamide. (1987). in preparation.

  39. Smith, P. J. S., and Boyle, P. R., The cardiac innervation ofEledone cirrhosa (Lamarck) (Mollusca: Cephalopoda). Phil. Trans R. Soc. (Lond.)B 300 (1983) 493–511.

    CAS  Google Scholar 

  40. Smith, P. J. S., Duthie, G. G., Wells, M. J., and Houlihan, D. F., Continuous recording of arterial blood PO2 inOctopus vulgaris during progressive hypoxia and movement. J. exp. Biol.117 (1985) 475–479.

    Google Scholar 

  41. Smith, P. J. S., and Hill, R. B., Cardiac performance in response to loading pressures and perfusion with 5-hydroxytryptamine in the isolated heart ofBusycon canaliculatum (Gastropoda, Prosobranchia). J. exp. Biol.123 (1986) 243–253.

    CAS  Google Scholar 

  42. Smith, P. J. S., and Hill, R. B., Modulation of output from an isolated gastropod heart: Effects of acetylcholine and FMRFamide. J. exp. Biol. (1987) in press.

  43. Straub, W., Zur Physiologie des Aplysienherzen. Pflügers Arch. ges. Physiol.86 (1901) 504–532.

    Google Scholar 

  44. Straub, W., Fortgesetzte Studien am Aplysienherzen (Dynamik, Kreislauf und dessen Innervation) nebst Bemerkungen zur vergleichenden Muskelphysiologie. Pflügers Arch. ges. Physiol.103 (1904) 429–449.

    Google Scholar 

  45. Thompson, R. J., Livingston, D. R., and de Zwaam, A., Physiological and biochemical aspects of valve closure in the Giant ScallopPlacopecten magellanicus. J. comp. Physiol.137 (1980) 97–104.

    CAS  Google Scholar 

  46. Tublitz, N. J., and Truman, J. W., Insect cardioative peptides. II. Neurohormonal control of heart activity by two cardioactive peptides in the tobacco hawkmoth,Manduca sexta. J. exp. Biol.114 (1985) 381–396.

    CAS  PubMed  Google Scholar 

  47. Wells, M. J., The heartbeat ofOctopus vulgaris. J. exp. Biol.78 (1979) 87–104.

    Google Scholar 

  48. Wells, M. J., Circulation in cephalopods, in: The Mollusca, vol. 5, pp. 239–290. Eds A. S. M. Saleuddin and K. M. Wilbur. Academic Press, New York 1983.

    Google Scholar 

  49. Wells, M. J., Duthie, G. G., Houlihan, D. F., Smith, P. J. S., and Wells, J., Blood flow and pressure changes in exercising octopuses. J. exp. Biol. (1987) in press.

  50. Wells, M. J., O'Dor, R. K., Mangold, K., and Wells, J., Oxygen consumption in movement byOctopus. Mar. Behav. Physiol.9, (1983) 289–303.

    Google Scholar 

  51. Wells, M. J., and Smith, P. J. S., The performance of theOctopus circulatory system: A triumph of engineering over design. Experientia43 (1987) 487–499.

    Google Scholar 

  52. Welsh, J. H., Neurohormones, in: The Hormones, pp. 97–151. Eds G. Pincus and K. V. Thimann. Academic Press, New York 1955.

    Google Scholar 

  53. Wilkens, L. A., Electrophysiological studies on the heart of the bivalve molluscModiolus demissus. II. Ionic basis of the action potential. J. exp. Biol.56 (1972) 293–310.

    CAS  PubMed  Google Scholar 

  54. Wilkens, L. A., and Greenberg, M. J., Effects of acetylcholine and 5-hydroxytryptamine and their ionic mechanism of action on the electrical and mechanical activity of molluscan heart smooth muscle. Comp. Biochem. Physiol.45 (1973) 637–651.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, P.J.S. Cardiac output in the Mollusca: Scope and regulation. Experientia 43, 956–965 (1987). https://doi.org/10.1007/BF01952210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952210

Key words

Navigation