Skip to main content
Log in

The mitochondrial processing peptidase: Function and specificity

  • Milti-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Targeting signals of mitochondrial precursors are cleaved in the matrix during or after import by the mitochondrial processing peptidase (MPP). This enzyme consists of two nonidenticalα- andβ-subunits each of molecular weight of about 50 kDa. In mammals and fungi, MPP is soluble in the matrix, whereas in plants the enzyme is part of the cytochromebc 1 complex. MPP is a metalloendopeptidase which has been classified as a member of the pitrilysin family on the basis of the HXXEHX76E zinc-binding motif present inβ-MPP. Both subunits of MPP are required for processing activity. Theα-subunit of MPP, which probably recognizes a three-dimensional motif adopted by the presequence, presents the presequence toβ-MPP, which carries the catalytic active site. MPP acts as an endoprotease on chemically synthesized peptides corresponding to mitochondrial presequences. Matrix-targeting signals and MPP cleavage signals seem to be distinct, although the two signals may overlap within a given presequence. The structural element helix-turn-helix, that cleavable presequences adopt in a membrane mimetic environment, may be required for processing but is not sufficient for proteolysis. Binding of the presequence byα-MPP tolerates a high degree of mutations of the presequence.α-MPP may present a degenerated cleavage site motif toβ-MPP in an accessible conformation for processing. The conformation of mitochondrial presequences bound to MPP remains largely unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verner K. and Schatz G. (1988) Protein translocation across membranes. Science241: 1307–1313

    PubMed  Google Scholar 

  2. Böhni P., Gasser S., Leaver C. and Schatz G. (1980) A matrix-localized mitochondrial protease processing cytoplasmically-made precursors to mitochondrial proteins. In: The Organization and Expression of the Mitochondrial Genome, pp. 423–433, Kroon A. M. and Saccone C. (eds), Elsevier/North Holland, Amsterdam

    Google Scholar 

  3. Böhni P. C., Daum G. and Schatz G. (1983) Import of proteins into mitochondria. Partial purification of a matrix-located protease involved in cleavage of mitochondria precursor polypeptides. J. Biol. Chem.258: 4937–4943

    PubMed  Google Scholar 

  4. McAda P. and Douglas M. G. (1982) A neutral metallo-endoprotease involved in the processing of an F1-ATPase subunit precursor in mitochondria. J. Biol. Chem.257: 3177–3182

    PubMed  Google Scholar 

  5. Miura S., Mori M. and Tatibana M. (1982) A mitochondrial protease that cleaves the precursor of ornithine carbamyltransferase precursor into mitochondria: purification and properties. Eur. J. Biochem.122: 641–647

    PubMed  Google Scholar 

  6. Conboy J. G., Fenton W. A. and Rosenberg L. E. (1982) Processing of preornithine transcarbamylase requires a zinc-dependent protease localized to the mitochondrial matrix. Biochem. Biophys. Res. Commun.105: 1–7

    Article  PubMed  Google Scholar 

  7. Schmidt B., Wachter E., Sebald W., and Neupert W. (1984) Processing peptidase of neurospora mitochondria: two-step cleavage of imported ATPase subunit 9. Eur. J. Biochem.144: 581–588

    Article  PubMed  Google Scholar 

  8. Kumamoto T., Ito A. and Omura T. (1986) Characterization of a mitochondrial matrix protease catalysing the processing of adrenotoxin precursor. J. Biochem.100: 247–254

    PubMed  Google Scholar 

  9. Hawlitschek G. H., Schneider H., Schmidt B., Tropschug, M., Hartl F. U. and Neupert W. (1988) Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell53: 795–806

    Article  PubMed  Google Scholar 

  10. Yang M., Jensen R. E. and Schatz G. (1988) Import of proteins into yeast mitochondria: the purified matrix protease contains two subunits which are encoded by the nuclear MAS1 and MAS2 genes. EMBO J.7: 3857–3862

    PubMed  Google Scholar 

  11. Ou W. J., Ito A., Okazaki H. and Omura T. (1989) Purification and characterization of a processing protease from rat liver mitochondria. EMBO J8: 2605–2612

    PubMed  Google Scholar 

  12. Kleiber J. Kalousek F., Swaroop M. and Rosenberg L. E. (1990) The general mitochondrial matrix processing protease from rat liver: structural characterization of the catalytic subunit. Proc. Natl. Acad. Sci. USA87: 7978–7982

    PubMed  Google Scholar 

  13. Schulte U., Arretz M., Schneider H., Tropschug M., Wachter E., Neupert W. et al. (1989) A family of mitochondrial proteins involved in bioenergetics an biogenesis. Nature339: 147–149

    Article  PubMed  Google Scholar 

  14. Braun H. P., Emmermann M., Kruft V. and Schmitz U. K. (1992) The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain. EMBO J.11: 3219–3227

    PubMed  Google Scholar 

  15. Eriksson A. C. and Galser E. (1992) Mitochondrial processing peptidase: a general processing peptidase of spinach leaf mitochondria is a membrane-bound enzyme. Biochim. Biophys. Acta1140: 208–214

    Google Scholar 

  16. Emmerman M., Braun H. P. and Schmitz U. K. (1993) The two high molecular weight subunits of cytochrome c reductase from potato are immunologically related to the mitochondrial processing enhancing protein. Biochim. Biophys. Acta1142: 306–310

    Google Scholar 

  17. Emmermann M., Braun H. P. and Schmitz U. K. (1994) The mitochondrial processing peptidase from potato: a self-processing enzyme encoded by two differentially expressed genes. Mol. Gen. Genet.245: 237–245

    Article  PubMed  Google Scholar 

  18. Eriksson A. C., Sjöling S. and Galser E. (1993) A general processing proteinase of spinach leaf mitochondria is associated with thebc 1 complex of the respiratory chain. In: Plant mitochondria, pp. 299–306, Brennicke A. and Kück U. (eds), VCH Weinheim, New York

    Google Scholar 

  19. Yaffe M. P. and Schatz G. (1984) Two nuclear mutations that block mitochondrial protein import in yeast. Proc. Natl. Acad. Sci. USA.81: 4819–4823

    PubMed  Google Scholar 

  20. Yaffe M. P., Ohta S. and Schatz G. (1985) A yeast mutant temperature-sensitive for mitochondrial assembly is deficient in a mitochondrial protease activity that cleaves imported precursor polypeptides. EMBO J.4: 2069–2074

    PubMed  Google Scholar 

  21. Witte C., Jensen R. E., Yaffe M. P. and Schatz G. (1988) MAS1, a gene essential for yeast mitochondrial assembly, encodes a subunit of the mitochondrial processing protease. EMBO J.7: 1439–1447

    PubMed  Google Scholar 

  22. Jensen R. E. and Yaffe M. P. (1988) Import of proteins into yeast mitochondria: the nuclear MAS2 gene encodes a component of the processing protease that is homologous to the MAS1-encoded subunit. EMBO J.7: 3863–3871

    PubMed  Google Scholar 

  23. Pollock R. A., Hartl F.-U., Cheng M. Y., Ostermann J., Horwich A. and Neupert W. (1988) The processing peptidase of yeast mitochondria: the two cooperating components MPP and PEP are structurally related. EMBO J.7: 3493–3500

    PubMed  Google Scholar 

  24. Emmermann M., Braun H. P., Arretz M. and Schmitz U. K. (1993) Characterization of the bifunctional cytochrome c reductase-processing peptidase complex from potato mitochondria. J. Biol. Chem.268: 18936–18942

    PubMed  Google Scholar 

  25. Paces V., Rosenberg L. E., Fenton W. A. and Kalousek, F. (1993) Theβ subunit of the mitochondrial processing peptidase from rat liver: cloning and sequencing of a cDNA and comparison with a proposed family of metallopeptidases. Proc. Natl. Acad. Sci. USA.90: 5355–5358

    PubMed  Google Scholar 

  26. Géli V., Yang M., Suda K., Lustig A. and Schatz G. (1990) The MAS-encoded processing protease of yeast mitochondria: overproduction and characterization of its two nonidentical subunits. J. Biol. Chem.265: 19216–19222

    PubMed  Google Scholar 

  27. Hurt E. C., Allison D. S., Muller U. and Schatz G. (1987) Amino-terminal deletions in the presequence of an imported mitochondrial protein block the targeting function and proteolytic cleavage of the presequence at the carboxy terminus. J. Biol. Chem.262: 1420–1424

    PubMed  Google Scholar 

  28. Kraus J. P., Novotny, J., Kalousek F., Swaroop M. and Rosenberg L. E. (1988) Different structures in the amino-terminal domain of the ornithine transcarbamylase leader peptide are involved in mitochondrial import and carboxyl-terminal cleavage. Proc. Natl. Acad. Sci. USA85: 8905–8909

    PubMed  Google Scholar 

  29. Isaya G., Kalousek F., Fenton W. A. and Rosenberg L. E. (1991) Cleavage of precursors by the mitochondrial processing peptidase requires a compatible mature protein or an intermediate octapeptide. J. Cell Biol.113: 65–76

    Article  PubMed  Google Scholar 

  30. Schneider H., Arretz M., Wachter E. and Neupert W. (1990) Matrix processing peptidase of mitochondria: structure-function relationships. J. Biol. Chem.265: 9881–9887

    PubMed  Google Scholar 

  31. Rawlings N. D. and Barrett A. J. (1991) Homologues of insulinase, a new superfamily of metalloendopeptidases. Biochem. J.275: 389–391

    PubMed  Google Scholar 

  32. Rawlings N. D. and Barrett A. J. (1993) Evolutionary families of peptidases. Biochem. J.290: 205–218

    PubMed  Google Scholar 

  33. Luciano P., Geoffroy S., Brandt A., Hernandez J. F. and Géli V. (1996) Theα-subunit of the yeast mitochondrial processing peptidase presents mitochondrial presequences to the catalyticβ-subunit. (Submitted for publication.)

  34. Yang M., Géli, V., Oppliger W., Suda K., James P. and Schatz G. (1991) The MAS-encoded processing protease of yeast mitochondria: interaction of the purified enzyme with signal peptides and a purified precursor protein. J. Biol. Chem.266: 6416–6423

    PubMed  Google Scholar 

  35. Arretz M., Schneider H., Guiard B., Brunner M. and Neupert W. (1994) Characterization of the mitochondrial processing peptidase ofNeurospora crassa. J. Biol. Chem.269: 4959–4967

    PubMed  Google Scholar 

  36. Géli V. (1993) Functional reconstitution inEscherichia coli of the yeast mitochondrial matrix peptidase from its two inactive subunits. Proc. Natl. Acad. Sci. USA.90: 6247–6251

    PubMed  Google Scholar 

  37. Saavedra-Alanis V. M., Rysavy P., Rosenberg L. E. and Kalousek F. (1994) Rat liver mitochondrial processing peptidase. Both alpha- and beta-subunits are required for activity. J. Biol. Chem.269: 9284–9288

    PubMed  Google Scholar 

  38. Meulenberg J. J., Sellink E., Loenen W. A., Riegman N. H., van Kleef M. and Postma P. W. (1990) Cloning ofKlebsiella pneumoniae pqq genes and PQQ biosynthesis inEscherichia coli. FEMS Microbiol. Lett.59: 337–343

    Article  PubMed  Google Scholar 

  39. Pierotti A. R., Prat A., Chesneau V., Gaudoux F., Leseney A. M., Foulon T. et al. (1994)N-arginine dibasic convertase, a metalloendopeptidase as a prototype of a class of processing enzymes. Proc. Natl. Acad. Sci. USA91: 6078–6082

    PubMed  Google Scholar 

  40. Braun H. P. and Schmitz U. K. (1995) Are the ‘core’ proteins of the mitochondrial bcl complex evolutionary relics of a processing protease? Trends Biochem. Sci.20: 171–175

    Article  PubMed  Google Scholar 

  41. Kuo W. L., Gehm B. D. and Rosner M. R. (1991) Regulation of insulin degradation: expression of an evolutionarily conserved insulin-degrading enzyme increases degradation via an intracellular pathway. Mol. Endocrinol.5: 1467–1476

    PubMed  Google Scholar 

  42. Becker A. B. and Roth R. A. (1992) An unusual active site identified in a family of zinc metalloendopeptidases. Proc. Natl. Acad. Sci. USA89: 3835–3839

    PubMed  Google Scholar 

  43. Matthews B. W. (1988) Structural basis of the action of thermolysin and related zinc peptidases. Accounts. Chem. Res.21: 333–340

    Article  Google Scholar 

  44. Stocker W. and Bode W. (1995) Structural features of a superfamily of zinc-endopeptidases: the metzincins. Curr. Opin. Struct. Biol.5: 383–390

    Article  PubMed  Google Scholar 

  45. Becker A. B. and Roth R. A. (1993) Identification of glutamate-169 as the third zinc-binding residue in proteinase III, a member of the family of insulin-degrading enzymes. Biochem. J.292: 137–142

    PubMed  Google Scholar 

  46. Perlman R. K., Gehm B. D., Kuo W. L. and Rosner M. R. (1993) Functional analysis of conserved residues in the active site of insulin-degrading enzyme. J. Biol. Chem.268: 21538–21544

    PubMed  Google Scholar 

  47. Kitada S., Shimokata K., Niidome T., Ogishima T. and Ito A (1995) A putative metal-binding site in the beta subunit of rat mitochondrial processing peptidase is essential for its catalytic activity. J. Biochem.117: 1148–1150

    PubMed  Google Scholar 

  48. Cheng Y. S. E. and Zipser D. (1979) Purification and characterization of protease III fromEscherichia coli. J. Biol. Chem.254: 4698–4706

    PubMed  Google Scholar 

  49. Ebrahim A., Hamel F. G., Bennett R. G. and Duckworth W. C. (1991) Identification of the metal associated with the insulin degrading enzyme. Biochem. Biophys. Res. Commun.181: 1398–1406

    Article  PubMed  Google Scholar 

  50. Ding L., Becker A. B., Suzuki A. and Roth R. A. (1992) Comparison of the enzymatic and biochemical properties of human insulin-degrading enzyme andEscherichia coli protease III. J. Biol. Chem.267: 2414–2420

    PubMed  Google Scholar 

  51. Lemire B. D., Fankhauser C., Baker A. and Schatz G. (1989) The mitochondrial targeting function of randomly generated peptide sequences correlates with predicted helical amphiphilicity. J. Biol. Chem.264: 20206–20215

    PubMed  Google Scholar 

  52. Allison D. S. and Schatz G. (1986) Artificial mitochondrial presequences. Proc. Natl. Acad. Sci. USA83: 9011–9015

    PubMed  Google Scholar 

  53. Roise D., Theiler F., Horvath S. J., Tomich J. M., Richards J. H., Allison D. S. et al. (1988) Amphiphilicity is essential for mitochondrial presequence function. EMBO J.7: 649–653

    PubMed  Google Scholar 

  54. Roise D., Horvath S. J., Tomich J. M., Richards J. H. and Schatz G. (1986) A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J.5: 1327–1334

    PubMed  Google Scholar 

  55. Von Heijne G. (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J.5: 1335–1342

    PubMed  Google Scholar 

  56. Gavel Y. and von Heijne G. (1990) Cleavage-site motifs in mitochondrial targeting peptides. Prot. Engineer.4: 33–37

    Google Scholar 

  57. Niidome T., Kitada S., Shimokata K., Ogishima T. and Ito A. (1994) Arginine residues in the extension peptide are required for cleavage of a precursor by mitochondrial processing peptidase: demonstration using synthetic peptide as a substrate. J. Biol. Chem.269: 24719–24722

    PubMed  Google Scholar 

  58. Endo T., Shimada I., Roise D. and Inagaki F. (1989) N-terminal half of a mitochondrial presequence peptide takes a helical conformation when bound to dodecylphosphocholine micelles —a proton magnetic resonance study. J. Biochem.106: 396–400

    PubMed  Google Scholar 

  59. Chupin V., Leenhouts J. M., de Kroon A. I. P. M. and de Kruijff B. (1995) Cardiolipin modulates the secondary structure of the presequence peptide of cytochrome oxidase subunit IV: a 2D1H-NMR study. FEBS Lett.373: 239–244

    Article  PubMed  Google Scholar 

  60. Chupin V., Leenhouts J. M., de Kroon A. I. P. M. and de Kruijff B. (1995) Secondary structure and topology of a mitochondrial presequence peptide associated with negatively charged micelles. A 2D1H-NMR study. Biochemistry35: 3141–3146

    Article  Google Scholar 

  61. Bruch M. D. and Hoyt D. W. (1992) Conformational analysis of a mitochondrial presequence derived from the F1-ATPase beta-subunit by CD and NMR spectroscopy. Biochim. Biophys. Acta1159: 81–93

    PubMed  Google Scholar 

  62. Karslake C., Piotto M. E., Pak Y. K., Weiner H. and Gorenstein D. G. (1990) 2D NMR and structural model for a mitochondrial signal peptide bound to a micelle. Biochemistry29: 9872–9878

    Article  PubMed  Google Scholar 

  63. Wang Y. and Weiner H. (1993) The presequence of rat liver aldehyde dehydrogenase requires the presence of an alphahelix at its N-terminal region which is stabilized by the helix at its C termini. J. Biol. Chem.268: 4759–4765

    PubMed  Google Scholar 

  64. Thornton K., Wang Y., Weiner H. and Gorenstein D. G. (1993) Import, processing, and two-dimensional NMR structure of a linker-deleted signal peptide of rat liver mitochondrial aldhehyde. J. Biol. Chem.268: 19906–19914

    PubMed  Google Scholar 

  65. Hammen P. K., Gorenstein D. G. and Weiner H. (1994) Structure of the signal sequences for two mitochondrial matrix proteins that are not proteolytically processed upon import. Biochemistry33: 8610–8617

    Article  PubMed  Google Scholar 

  66. Srinivasan M., Kalousek F., Farrell L. and Curthoys N. P. (1995) Role of the N-terminal 118 amino acids in the processing of the rat renal mitochondrial glutaminase precursor. J. Biol. Chem.270: 1191–1197

    Article  PubMed  Google Scholar 

  67. Waltner M. and Weiner H. (1995) Conversion of a nonprocessed mitochondrial precursor protein into one that is processed by the mitochondrial processing peptidase. J. Biol. Chem.270: 26311–26317

    Article  PubMed  Google Scholar 

  68. Ou W. J., Kumamoto T., Mihara K., Kitada S., Niidome T., Ito A. and Omura T. (1994) Structural requirements for recognition of the precursor proteins by the mitochondrial processing peptidase. J. Biol. Chem.269: 24673–24678

    PubMed  Google Scholar 

  69. Jarvis J. A., Ryan M. T., Hoogenraad N. J., Craik D. J. and Hoj P. B. (1995) Solution structure of the acetylated and noncleavable mitochondrial targeting signal of rat chaperonin 10. J. Biol. Chem.270: 1323–1331

    Article  PubMed  Google Scholar 

  70. Klaus C., Guiard B., Neupert W. and Brunner M. (1996) Determinants in the presequence of cytochromeb2 for import into mitochondria and for proteolytic processing. Eur. J. Biochem.236: 856–861

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Géli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luciano, P., Géli, V. The mitochondrial processing peptidase: Function and specificity. Experientia 52, 1077–1082 (1996). https://doi.org/10.1007/BF01952105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952105

Key words

Navigation