Skip to main content
Log in

Ethanol and opioid receptor signalling

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Ethanol may modulate endogenous opioid systems by disrupting opioid receptor signalling. Low concentrations of ethanol slightly potentiate μ-opioid receptor binding by increasing receptor Bmax, and, in some cases, chronic ethanol exposure decreases the density or affinity of the μ-opioid receptors. By contrast, high concentrations of ethanol acutely decrease λ-opioid receptor binding by decreasing receptor affinity, whereas chronic exposure of animals and neuronal cell lines to lower concentrations of ethanol leads to possibly adaptive increases in the density or affinity of the λ-opioid receptors. In the neuronal cell line NG108-15, ethanol does not up-regulate the λ-opioid receptor by blocking receptor degradation or endocytosis, but protein synthesis is required for this response. Up-regulation of the λ-opioid receptor renders ethanol-treated NG108-15 cells 3.5-fold more sensitive to opioid inhibition of adenylyl cyclase. Long-term treatment with ethanol also increases maximal opioid inhibition in NG108-15 cells, possibly by decreasing levels of Gαs and its mRNA. Ethanol differentially modulates signal transduction proteins in three additional neuronal cell lines, N18TG2, N4TG1, and N1E-115. Ethanol-treated N18TG2 cells show the least up-regulation of the λ-opioid receptor, little heterologous desensitization of adenylyl cyclase, and no changes in Gαs or Gαi. By contrast, ethanol-treated N1E-115 cells show the largest up-regulation of the λ-opioid receptor, the most heterologous desensitization of adenylyl cyclase, and concentration-dependent decreases in Gαs and increases in Gαi. Further analysis of these related neuronal cell lines may help to identify the molecular elements that endow some, but not all, neuronal cells with the capacity to adapt to ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bmax :

maximal binding capacity

CNS:

central nervous system

DADLE:

[D-Ala2, D-Leu5]enkephalin

DAGO:

H-Tyr-D-Ala(Me)Phe-NH-CH2-OH

DAMEA:

[D-Ala2, Met5]enkephalinamide

DHM:

dihydromorphine

DSTLE:

Tyr-D-Ser-Gly-Phe-Leu-Thr-OH

FT-IR:

Fourier-transform infrared spectroscopy

IC50 :

concentration of a drug producing half-maximal inhibition

Kd :

equilibrium dissociation constant

NMR:

nuclear magnetic resonance

POMC:

proopiomelanocortin

References

  1. Atweh, S. F., and Kuhar, M. J., Distribution and physiological significance of opioid receptors in the brain. Br. med. Bull.39 (1983) 47–52.

    Article  CAS  PubMed  Google Scholar 

  2. Bhargava, H., Rapaka, R. S., and Renugopalakrishnan, V., Effect of ethanol on the binding of conformationally rigid and labile ligands of opioid receptors to rat brain membranes. Biochem. Pharmac.37 (1988) 2279–2283.

    Article  CAS  Google Scholar 

  3. Berman, R. F., Lee, J. A., Olson, K. L., and Goldman, M. S., Effects of naloxone on ethanol dependence in rats. Drugs Alc. Depend.13 (1984) 245–254.

    Article  CAS  Google Scholar 

  4. Blum, K., Futterman, S., Wallace, J. E., and Schwertner, H. A., Naloxone-induced inhibition of ethanol dependence in mice. Nature265 (1977) 49–51.

    Article  CAS  PubMed  Google Scholar 

  5. Blum, K., Elston, S. F. A., DeLallo, L., Briggs, A. H., and Wallace, J. E., Ethanol acceptance as a function of genotype amounts of brain [Met]enkephalin. Proc. natl Acad. Sci. USA80 (1983) 6510–6512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bode, D. C., and Molinoff, P. B., Effects of ethanol in vitro on the beta adrenergic receptor-coupled adenylate cyclase system. J. Pharmac. exp. Ther.246 (1988) 1040–1047.

    CAS  Google Scholar 

  7. Charness, M. E., and Diamond, I., Alcohol and the nervous system, in: Current Neurology, pp. 383–421. Ed. S. H. Appel. Wiley, New York 1984.

    Google Scholar 

  8. Charness, M. E., Gordon, A. S., and Diamond, I., Ethanol modulation of opiate receptors in cultured neural cells. Science222 (1983) 1426–1428.

    Article  Google Scholar 

  9. Charness, M. E., Henteleff, M., and Querimit, L. A., G-mediated cAMP accumulation in clonal neural cell lines: differential modulation by acute and chronic ethanol exposure. Submitted.

  10. Charness, M. E., Querimit, L. A., and Diamond, I., Ethanol induces the expression of functional δ-opioid receptors in the neuroblastomaglioma hybrid NG108-15 cell line. J. biol. Chem.261 (1986) 3164–3169.

    Article  CAS  PubMed  Google Scholar 

  11. Charness, M. E., Querimit, L. A., and Henteleff, M., Ethanol differentially regulates G proteins in neural cells. Biochem. biophys. Res. Commun.155 (1988) 138–143.

    Article  CAS  PubMed  Google Scholar 

  12. Charness, M. E., and Querimit, L. A., Regulation of the δ-opioid receptor: differential effects of ethanol in four clonal neural cell lines. Submitted.

  13. Cherubini, E., and North, R. A., μ andk opioids inhibit transmitter release by different mechanisms. Proc. natl Acad. Sci. USA82 (1985) 1860–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cloninger, C. R., Neurogenetic adaptive mechanisms in alcoholism. Science236 (1987) 410–416.

    Article  CAS  PubMed  Google Scholar 

  15. Egan, T. M., and North, R. A., Both μ and δ opiate receptors exist on the same neuron. Science214 (1981) 923–924.

    Article  CAS  PubMed  Google Scholar 

  16. Fantozzi, R., Mullikin-Kipatrick, D., and Blume, A. J., Irreversible inactivation of opiate receptors in the neuroblastoma x glioma hybrid NG108-15 by chlornaltrexamine. Molec. Pharmac.20 (1981) 8–15.

    CAS  Google Scholar 

  17. Gianoulakis, C., Long-term ethanol alters the binding of3H-opiates to brain membranes. Life Sci.33 (1983) 725–733.

    Article  CAS  PubMed  Google Scholar 

  18. Gianoulakis, C., Effects of ethanol on the biosynthesis and regulation of opioid peptides. Experientia45 (1989) 428–435.

    Article  CAS  PubMed  Google Scholar 

  19. Gilbert, J. A., Knodel, E. L., Stenstrom, S. D., and Richelson, E., Function and regulation of methionine5-enkephalin and its receptors in murine neuroblastoma cells. J. biol. Chem.257 (1982) 1274–1281.

    Article  CAS  PubMed  Google Scholar 

  20. Gilbert, J. A., and Richelson, E., Function of δ-opioid receptors in cultured cells. Molec. cell. Biochem.55 (1983) 83–91.

    Article  CAS  PubMed  Google Scholar 

  21. Gilman, A., G Proteins: Transducers of receptor-generated signals. A. Rev. Biochem.56 (1987) 615–649.

    Article  CAS  Google Scholar 

  22. Goldberg, L., Quantitative studies on alcohol tolerance in man. Acta physiol. scand.5, suppl. 16 (1943).

  23. Goldsmith, P., Rossiter, K., Carter, A., Simonds, W., Unson, C. G., Vinitsky, R., and Spiegel, A. M., Identification of the GTP-binding protein encoded by G13 complementary DNA. J. biol. Chem.263 (1988) 6476–6479.

    Article  CAS  PubMed  Google Scholar 

  24. Gordon, A. S., Collier, K., and Diamond, I., Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol. Proc. natl Acad. Sci. USA83 (1986) 2105–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haffmans, J., and Dzoljic, M. R., Effects of delta opioid antagonists on enkephalin-induced seizures. Pharmacology34 (1987) 61–65.

    Article  CAS  PubMed  Google Scholar 

  26. Hamprecht, B., Structural, electrophysiological, biochemical, and pharmacological properties of neuroblastoma-glioma cell hybrids in cell culture. Int. Rev. Cytol.49 (1977) 99–170.

    Article  CAS  PubMed  Google Scholar 

  27. Hescheler, J., Rosenthal, W., Trautwein, W., and Schultz, G., The GTP-binding protein G0 regulates neuronal calcium channels. Nature325 (1987) 445–446.

    Article  CAS  PubMed  Google Scholar 

  28. Hiller, J. M., Angel, L. M., and Simon, E. J., Multiple opiate receptors: alcohol selectively inhibits binding to the delta receptor. Science214 (1981) 468–469.

    Article  CAS  PubMed  Google Scholar 

  29. Hiller, J. M., Angel, L. M., and Simon, E. J., Characterization of the selective inhibition of the delta subclass of opioid binding sites by alcohols. Molec. Pharmac.25 (1984) 249–255.

    CAS  Google Scholar 

  30. Hoffman, P. L., Chung, C. T., and Tabakoff, B., Effects of ethanol, temperature, and endogenous regulatory factors on the characteristics of striatal opiate receptors. J. Neurochem.43 (1984) 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  31. Hoffman, P. L., Ritzman, R. F., Walter, R., and Tabakoff, B., Arginine vasopressin maintains ethanol tolerance. Nature276 (1978) 614–616.

    Article  CAS  PubMed  Google Scholar 

  32. Hoffman, P. L., and Tabakoff, B., Ethanol does not modify opiate-mediated inhibition of striatal adenylate cyclase. J. Neurochem.46 (1986) 812–816.

    Article  CAS  PubMed  Google Scholar 

  33. Hoffman, P. L., Urwyler, S., and Tabakoff, B., Alterations in opiate receptor function after chronic ethanol exposure. J. Pharmac. exp. Ther.222 (1982) 182–189.

    CAS  Google Scholar 

  34. Hunt, W. A., Alcohol and Biological Membranes. The Guilford Press, New York 1985.

    Google Scholar 

  35. Hynes, M. D., Lochner, M. A., Bemis, K. G., and Hymson, D. L., Chronic ethanol alters the receptor binding characteristics of the δ-opioid receptor ligand, D-Ala2-D-Leu5 enkephalin in mouse brain. Life Sci.33 (1983) 2331–2337.

    Article  CAS  PubMed  Google Scholar 

  36. Johnson, R. A., Noll, E. C., and Rodney, W. M., Survival after a serum ethanol concentration of 11/2%. Lancet2 (1982) 1394.

    Article  CAS  PubMed  Google Scholar 

  37. Jorgensen, H. A., and Hole, K., Does ethanol stimulate brain opiate receptors? Studies on receptor binding and naloxone inhibition of ethanol-induced effects. Eur. J. Pharmac.75 (1981) 223–229.

    Article  CAS  Google Scholar 

  38. Jorgensen, H. A., and Hole, K., Evidence from behavioural and in vitro receptor binding studies that the enkephalinergic system does not mediate acute ethanol effects. Eur. J. Pharmac.125 (1986) 249–256.

    Article  CAS  Google Scholar 

  39. Khatami, S., Hoffman, P. L., Shibuya, T., and Salefsky, B., Selective effects of ethanol on opiate receptor subtypes in brain. Neuropharmacology26 (1987) 1503–1507.

    Article  CAS  PubMed  Google Scholar 

  40. Kenakin, T. P., Pharmacologic Analysis of Drug-Receptor Interaction. Raven Press, New York 1987.

    Google Scholar 

  41. Klee, W. A., and Nirenberg, M., A neuroblastoma x glioma hybrid cell line with morphine receptors. Proc. natl Acad. Sci. USA71 (1974) 3474–3477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klemm, W. R., Dreyfus, L. R., Forney, E., and Mayfield, M. A., Differential effects of low doses of ethanol on the impulse activity in various regions of the limbic system. Psychopharmacology50 (1976) 131–138.

    Article  CAS  PubMed  Google Scholar 

  43. Kurose, H., Katada, T., Amano, T., and Ui, M., Specific uncoupling by islet activating protein, pertussis toxin, of negative signal transduction via alpha2-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells. J. biol. Chem.258 (1983) 4870–4875.

    Article  CAS  PubMed  Google Scholar 

  44. Law, P. Y., Hom, D. S., and Loh, H. H., Opiate regulation of adenosine 3′∶5′-cyclic monophosphate level in neuroblastoma x glioma NG108-15 hybrid cells: Relationship between receptor occupancy and effect. Molec. Pharmac.23 (1983) 26–35.

    CAS  Google Scholar 

  45. Law, P. Y., Hom, D. S., and Loh, H. H., Opiate receptor down-regulation and desensitization in neuroblastoma x glioma hybrid cells are two separate adaptive cellular processes. Molec. Pharmac.24 (1983) 413–424.

    CAS  Google Scholar 

  46. Levine, A. S., Hess, S. H., and Morley, J. E., Alcohol and the opiate receptor. Alcoholism: clin. exp. Res.7 (1983) 83–84.

    Article  CAS  Google Scholar 

  47. LeBlanc, A. E., Kalant, H., and Gibbins, R. J., Acute tolerance to ethanol in the rat. Psychopharmacologia41 (1975) 43–46.

    Article  CAS  PubMed  Google Scholar 

  48. Lindblad, B., and Olsson, R., Unusually high levels of blood alcohol? J. Am. med. Ass.236 (1976) 1600–1602.

    Article  CAS  Google Scholar 

  49. Lord, A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W., Endogenous opioid peptides: multiple agonists and receptors. Nature267 (1977) 495–499.

    Article  CAS  PubMed  Google Scholar 

  50. Lucchi, L., Bosio, A., Spano, P. F., and Trabucchi, M., Action of ethanol and salsalinol on opiate receptor function. Brain Res.232 (1981) 506–510.

    Article  Google Scholar 

  51. Macdonald, R. L., and Nelson, P. G., Specific-opiate-induced depression of transmitter release from dorsal root ganglion cells in culture. Science199 (1978) 1449–1451.

    Article  CAS  PubMed  Google Scholar 

  52. Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E., and Gilbert, P. E., The effects of morphine and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmac. exp. Ther.197 (1976) 517–532.

    CAS  Google Scholar 

  53. Mirsky, I. R., Piker, P., Rosenbaum, M., and Lederer, H., ‘Adaptation’ of the central nervous system to varying concentrations of alcohol in the blood. Quart. J. Stud. Alc.2 (1941) 35–45.

    Article  CAS  Google Scholar 

  54. Mochly-Rosen, D., Chang, F.-H., Cheever, L., Kim, M., Diamond, I., and Gordon, A. S., Chronic ethanol causes heterologous desensitization of receptors by reducing αs messenger RNA. Nature333 (1988) 848–850.

    Article  CAS  PubMed  Google Scholar 

  55. Mumby, S. M., Kahn, R. A., Manning, D. R., and Gilman, A. G., Antisera of designed specificity for subunits of guanine nucleotide-binding regulatory proteins. Proc. natl Acad. Sci. USA83 (1986) 256–269.

    Article  Google Scholar 

  56. Munson, P. J., and Rodbard, D., LIGAND: a computerized approach for the characterization of ligand-binding systems. Analyt. Biochem.107 (1980) 220–239.

    Article  CAS  PubMed  Google Scholar 

  57. North, R. A., Williams, J. T., Suprenant, A., and Christie, M. J., μ and δ receptors belong to a family of receptors that are coupled to potassium channels. Proc. natl Acad. Sci. USA84 (1987) 5487–5491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Paterson, S. J., Robson, L. E., and Kosterlitz, H. W., Opioid receptors, in: The Peptides, vol. 6, pp. 147–189. Eds S. Udenfriend and J. Meienhofer. Academic Press, New York 1984.

    Google Scholar 

  59. Peralta, E. G., Ashkenazi, A., Winslow, J. W., Ramachandran, J., and Capon, D. J., Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature334 (1988) 434–437.

    Article  CAS  PubMed  Google Scholar 

  60. Pfeiffer, A., Seizinger, B. R., and Herz, A., Chronic ethanol imbibition interferes with δ, but not with μ-opiate receptors. Neuropharmacology20 (1981) 1229–1232.

    Article  CAS  PubMed  Google Scholar 

  61. Rabin, R. A., Effect of ethanol on inhibition of striatal adenylate cyclase activity. Biochem. Pharmac.34 (1985) 4329–4331.

    Article  CAS  Google Scholar 

  62. Ransnas, L. A., and Insel, P. A., Subunit dissociation is the mechanism for hormonal activation of the Gs protein in native membranes. J. biol. Chem.263 (1988) 17239–17242.

    Article  CAS  PubMed  Google Scholar 

  63. Rapaka, R. S., Renugopalakrishnan, V., Goehl, T. J., and Collins, B. J., Ethanol-induced conformational changes of the peptide ligands for opioid receptors and their relevance to receptor interaction. Life Sci.39 (1986) 837–842.

    Article  CAS  PubMed  Google Scholar 

  64. Renugopalakrishnan, V., Huang, S.-G., and Rapaka, R. S., A 500 MHz1H NMR spectroscopic study of met5-enkephalinamide in aqueous solution: ethanol induced conformational changes. Biochem. biophys. Res. Commun.143 (1987) 126–132.

    Article  CAS  PubMed  Google Scholar 

  65. Richelson, E., Stenstrom, S., Forray, C., Enloe, L., and Pfenning, M., Effects of chronic exposure to ethanol on the prostaglandin E1 receptor-mediated response and binding in a murine neuroblastoma clone (N1E-115). J. Pharmac. exp. Ther.239 (1986) 687–692.

    CAS  Google Scholar 

  66. Rottenberg, H., Waring, A., and Rubin, E., Tolerance and cross-tolerance in chronic alcoholics: reduced membrane binding of ethanol and other drugs. Science213 (1981) 583–585.

    Article  CAS  PubMed  Google Scholar 

  67. Sibley, D. R., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J., Regulation of transmembrane signalling by receptor phosphorylation. Cell48 (1986) 913–922.

    Article  Google Scholar 

  68. Simonds, W. F., The molecular basis of opioid receptor function. Endocr. Rev.9 (1988) 200–212.

    Article  CAS  PubMed  Google Scholar 

  69. Sonders, M. S., Keana, J. F. W., and Weber, E., Phencylidine and psychotomimetic sigma opiates: recent insights into their biochemical and physiological sites of action. Trends Neurosci.11 (1988) 37–40.

    Article  CAS  PubMed  Google Scholar 

  70. Stenstrom, S., and Richelson, E., Acute effect of ethanol on prostaglandin E1-mediated cyclic AMP formation by a murine neuroblastoma clone. J. Pharmac. exp. Ther.221 (1982) 334–341.

    CAS  Google Scholar 

  71. Syapin, P. J., and Noble, E. P., Studies on ethanol's effects on cells in culture, in: Biochemistry and Pharmacology of Ethanol, pp. 521–540. Eds E. Majchrowicz and E. P. Noble. Plenum Press, New York 1979.

    Chapter  Google Scholar 

  72. Tabakoff, B., and Hoffman, P. L., Alcohol interactions with brain opiate receptors. Life Sci.32 (1983) 197–204.

    Article  CAS  PubMed  Google Scholar 

  73. Tabakoff, B., Urwyler, S., and Hoffman, P. L., Ethanol alters kinetic characteristics and function of striatal morphine receptors. J. Neurochem.37 (1981) 518–521.

    Article  CAS  PubMed  Google Scholar 

  74. Treistman, S. N., and Wilson, N., Effects of ethanol on early potassium currents in aplysia: cell specificity and influence of channel state. J. Neurosci.7 (1987) 3207–3214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Urso, T., Gavaler, J. S., and Van Thiel, D. H., Blood ethanol levels in sober alcohol users seen in an emergency room. Life Sci.28 (1981) 1053–1056.

    Article  CAS  PubMed  Google Scholar 

  76. Ueda, H., Harada, H., Nozaki, M., Katada, T., Ui, M., Satoh, M., and Takagi, H., Reconstitution of rat brain μ-opioid receptors with purified guanine nucleotide-binding regulatory proteins, Gi and G0. Proc. natl Acad. Sci. USA85 (1988) 7013–7017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Victor, M., and Brausch, C., The role of abstinence in the genesis of alcoholic epilepsy. Epilepsia8 (1967) 1–20.

    Article  CAS  PubMed  Google Scholar 

  78. Wenger, J. R., Tiffany, T. M., Bombardier, C., Nicholls, K., and Woods, S. C., Ethanol tolerance in the rat is learned. Science213 (1981) 575–577.

    Article  CAS  PubMed  Google Scholar 

  79. Werz, M. A., Grega, D. S., and Macdonald, R. L., Actions of μ, δ, andK opioid agonists and antagonists on mouse primary afferent neurons in culture. J. Pharmac. exp. Ther.243 (1987) 258–263.

    CAS  Google Scholar 

  80. Widdowson, P. S., The effect of neurotensin, TRH, and the δ-opioid receptor antagonist ICI 174864 on alcohol-induced narcosis in rats. Brain Res.424 (1987) 281–289.

    Article  CAS  PubMed  Google Scholar 

  81. Yatani, A., Codina, J., Brown, A. J., and Birnbaumer, L., Direct activation of a mammalian atrial muscarinic potassium channel by GTP regulatory protein Gk. Science235 (1987) 207–211.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charness, M.E. Ethanol and opioid receptor signalling. Experientia 45, 418–428 (1989). https://doi.org/10.1007/BF01952023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952023

Key words

Navigation