Skip to main content
Log in

Multi-grid dynamic iteration for parabolic equations

  • Part II Numerical Mathematics
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We study the method which is obtained when a multi-grid method (in space) is first applied directly to a parabolic intitial-boundary value problem, and discretization in time is done only afterwards. This approach is expected to be well-suited to parallel computation. Further, time marching can be done using different time step-sizes in different parts of the spatial domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Brandt,Multi-level adaptive finite-element methods. I. Variational problems. In:Special Topics of Applied Mathematics (J. Frehse, D. Pallaschke, U. Trottenberg, eds.), North-Holland, 1980, 91–128.

  2. Ph. Brenner, V. Thomée and L. B. Wahlbin,Besov Spaces and Applications to Difference Methods for Initial Value Problems. Springer Lecture Notes in Mathematics 434, 1975.

  3. K. Burrage and J. C. Butcher,Stability criteria for implicit Runge-Kutta methods. SIAM J. Numer. Anal. 16 (1979), 46–57.

    Article  Google Scholar 

  4. C. Corduneanu,Integral Equations and Stability of Feedback Systems. Academic Press, 1973.

  5. M. Crouzeix, Sur la B-stabilité des méthodes de Runge-Kutta. Numer. Math. 32 (1979), 75–82.

    Article  Google Scholar 

  6. W. Hackbusch,Parabolic multi-grid methods, In:Computing Methods in Applied Sciences and Engineering, VI (R. Glowinski, J.-L. Lions, eds.), North-Holland, Amsterdam, 1984.

    Google Scholar 

  7. W. Hackbusch,Multi-Grid Methods and Applications. Springer-Verlag, Berlin-Heidelberg, 1985.

    Google Scholar 

  8. E. Hairer, G. Bader and Ch. Lubich,On the stability of semi-implicit methods for ordinary differential equations. BIT 22 (1982), 211–232.

    Google Scholar 

  9. E. Hairer and Ch. Lubich,On the stability of Volterra Runge-Kutta methods. SIAM J. Numer. Anal. 21 (1984), 123–135.

    Article  Google Scholar 

  10. P. J. van der Houwen and H. B. de Vries,Preconditioning and coarse grid corrections in the solution of the initial value problem for nonlinear partial differential equations, SIAM J. Sci. Stat. Comput. 3 (1982), 473–485.

    Article  Google Scholar 

  11. E. Lelarasmee, A. E. Ruehli and A. L. Sangiovanni-Vincentelli,The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. CAD 1 (1982), 131–145.

    Google Scholar 

  12. U. Miekkala and O. Nevanlinna,Convergence of dynamic iteration methods for initial value problems. Helsinki University of Technology, Report Mat — A230 (1985), to appear in SIAM J. Sci. Stat. Comp.

  13. O. Nevanlinna,Matrix valued versions of a result of von Neumann with an application to time discretization. J. Comp. Appl. Math. 12 & 13 (1985), 475–489.

    Article  Google Scholar 

  14. A. R. Newton and A. L. Sangiovanni-Vincentelli,Relaxation-based electrical simulation. IEEE Trans. CAD 3 (1984), 308–331.

    Google Scholar 

  15. R. E. A. C. Paley and N. Wiener,Fourier Transforms in the Complex Domain, Amer. Math. Soc., Providence, R.I., 1934.

    Google Scholar 

  16. K. Stüben and U. Trottenberg,Multigrid methods: Fundamental algorithms, model problem analysis and applications. In:Multigrid Methods (W. Hackbusch, U. Trottenberg, eds.). Springer Lecture Notes in Mathematics 960, 1982.

  17. A. Zygmund,Trigonometric Series, Cambridge University Press, 1959.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubich, C., Ostermann, A. Multi-grid dynamic iteration for parabolic equations. BIT 27, 216–234 (1987). https://doi.org/10.1007/BF01934186

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01934186

1980 Mathematics Subject Classification

Navigation