Skip to main content
Log in

On the numerical integration of nonlinear initial value problems by linear multistep methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We study the numerical solution of the nonlinear initial value problem

$$\left\{ {\begin{array}{*{20}c} {{{du(t)} \mathord{\left/ {\vphantom {{du(t)} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} + Au(t) = f(t),t > 0} \\ {u(0) = c,} \\ \end{array} } \right.$$

whereA is a nonlinear operator in a real Hilbert space. The problem is discretized using linear multistep methods, and we assume that their stability regions have nonempty interiors. We give sharp bounds for the global error by relating the stability region of the method to the monotonicity properties ofA. In particular we study the case whereAu is the gradient of a convex functional φ(u).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Brezis,Operateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert, North Holland, Amsterdam 1973.

    Google Scholar 

  2. C. W. Cryer,A new class of highly stable methods: A 0-stable methods, BIT 13, 153–159 (1973).

    Google Scholar 

  3. G. Dahlquist,Stability and error bounds in the numerical integration of ordinary differential equations, Kungl. Tekn. Högsk. Handl. Stockholm, No 130 (1959).

  4. G. Dahlquist,Error analysis for a class of methods for stiff non-linear initial value problems, Springer Lect. Not. Math. 506, 60–74, Berlin-Heidelberg-New York 1976.

    Google Scholar 

  5. G. Dahlquist and O. Nevanlinna,l 2-estimates of the error in the numerical integration of non-linear differential systems, Dept. of Comp. Sci., Royal Institute of Technology, Report TRITA-NA-7607, (1976).

  6. J. W. Daniel,The approximate minimization of functionals, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1971.

    Google Scholar 

  7. J. L. Lions,Quelques méthodes de résolution des problemes aux limites non linéaires, Dunod, Gauthier-Villars, Paris 1969.

    Google Scholar 

  8. S. M. Lozinskii,Error estimation in the numerical integration of ordinary differential equations, Part I, (Russian), Isvestia Vyssich Včebnych Zavedenij Matematika, 1958, No 5 (6).

  9. O. Nevanlinna,On error bounds for G-stable methods, BIT 16, 79–84 (1976).

    Google Scholar 

  10. O. Nevanlinna,On the numerical solution of some Volterra equations on infinite intervals, Institut Mittag-Leffler, Report No 2, 1976.

  11. O. Nevanlinna,On multistep methods for nonlinear initial value problems with an application to minimization of convex functionals, Inst. of Math. Helsinki Univ. of Tech., Report HTKK-MAT-A76 (1976).

  12. F. Odeh and W. Liniger,Nonlinear fixed-h stability of linear multistep formulae, IBM Res. Rep. RC 5717, November 11, 1975.

  13. W. Uhlmann,Fehlerabschätzungen bei Anfangswertaufgaben gewöhnlicher Differentialgleichungssystems 1.Ordnung, Zs. Angew. Math. Mech., 37, 88–99 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevanlinna, O. On the numerical integration of nonlinear initial value problems by linear multistep methods. BIT 17, 58–71 (1977). https://doi.org/10.1007/BF01932399

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01932399

Keywords

Navigation