Skip to main content
Log in

Effect of stress on choline acetyltransferase activity of the brain and the adrenal of the rat

  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Choline acetyltransferase (ChAT) activity was determined in cerebral cortex, hypothalamus, hippocampus, cerebellum, medulla oblongata, midbrain and adrenal gland of rats exposed to acute or chronic stress. The exposure of animals to acute immobilization and cold stress (4°C) for one hour resulted in a significant decline of ChAT activity in all brain regions examined except for the medulla oblongata. Moreover, the exposure to acute stress resulted in significant increase of the same enzyme in the adrenal gland. However, chronic exposure of animals to cold stress (4°C) for 7 days resulted in no significant changes of ChAT activity in all tissues examined except for a decline in the midbrain and an increase in the medulla oblongata. The administration of corticosterone (2.0 mg/kg) 1 h prior to sacrificing caused an effect similar to that of acute stress on ChAT activity in all brain regions except for the hypothalamus and the cerebellum. It was concluded from this experiment that stress-induced changes in the ChAT activity of specific brain regions might be mediated by the adrenal steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Dilsaver, S. C., Acta psychiatr. scand.74 (1986) 312.

    Article  CAS  PubMed  Google Scholar 

  2. Fatranska, M., Budai, D., Oprsalova, Z., and Kvetnansky, R., Brain Res.424 (1987) 109.

    Article  CAS  PubMed  Google Scholar 

  3. Anisman, H., in: Psychopharmacology of Aversively Motivated Behavior, pp. 119–197. Eds H. Anisman and G. Bignami. Plenum, New York 1978.

    Chapter  Google Scholar 

  4. Kolta, M. G., and Soliman, K. F. A., Endokrinologie77 (1981) 179.

    CAS  PubMed  Google Scholar 

  5. Gabriel, N. N., and Soliman, K. F. A., Hormones Res.17 (1983) 43.

    Article  CAS  Google Scholar 

  6. Wahba, Z. Z., and Soliman, K. F. A., Pharmacology34 (1987) 66.

    Article  CAS  PubMed  Google Scholar 

  7. Owasoyo, O., and Iramain, C. A., Vet. Sci. Commun.3 (1979) 243.

    Article  CAS  Google Scholar 

  8. Vernadakis, A., and Ruthledge, C. O., J. Neurochem.20 (1973) 1503.

    Article  CAS  PubMed  Google Scholar 

  9. Naik, S. R., and Sheth, U. K., Ind. J. Med. Res.58 (1970) 480.

    CAS  Google Scholar 

  10. Celesia, G. G., and Jasper, H. H., Neurology, Minneap.15 (1966) 1053.

    Article  Google Scholar 

  11. Russel, R. W., Rev. Pharmac. Toxic.22 (1982) 435.

    Article  Google Scholar 

  12. Janowsky, D. S., Risch, S. C., Hury, L. Y., Kennedy, B., and Zigler, M., Am. J. Psychiat.142 (1985) 738.

    Article  CAS  PubMed  Google Scholar 

  13. Estevez, E. E., Jerusalinsky, D., Medina, J. H., and DeRobertis, E., Neuroscience12 (1984) 1353.

    Article  Google Scholar 

  14. Wahba, Z. Z., and Soliman, K. F. A., Experientia44 (1988) 742.

    Article  CAS  PubMed  Google Scholar 

  15. Fatranska, M., Kiss, A., Opralova, Z., and Kvetnasnky, R., Endocr. Experiment.33 (1989) 3.

    Google Scholar 

  16. Fonnum, F., in: Cholinergic Mechanism, pp. 145–160. Ed. P. G. Waser. Raven, New York 1975.

    Google Scholar 

  17. Kuhar, M. J., in: Biology of Cholinergic Function, pp. 3–27. Eds A. M. Goldberg and I. Hanin. Raven, New York 1976.

    Google Scholar 

  18. McCaman, R. E., and McCaman, W. M., in: Biology of Cholinergic Function, pp. 485–513. Eds A. M. Goldberg and I. Hanin. Raven, New York 1976.

    Google Scholar 

  19. Ichikawa, T., and Hirata, Y., J. Neurosci.3 (1986) 2286.

    Google Scholar 

  20. Janowsky, K. S., and Risch, S. C., Drug Dev. Res. (1984) 125.

  21. Chao, L. P., and Wolfgram, F., Analyt. Biochem.46 (1972) 144.

    Article  Google Scholar 

  22. Steel, R. G. D., and Torrie, J. H., Principles and Procedures of Statistics. McGraw-Hill, New York 1960.

    Google Scholar 

  23. Hoover, D. B., Meth, E. A., and Jacobowitz, D. M., Brain Res.153 (1973) 259.

    Google Scholar 

  24. Finkelstein, Y., Koffler, B., Rabey, J. M., and Gilad, G. M., Brain Res.343 (1985) 314.

    Article  CAS  PubMed  Google Scholar 

  25. Selye, H., The Physiology and Pathology of Exposure to Stress. Acta Inc., Montréal 1950.

    Google Scholar 

  26. Sakellaris, P. C., and Vernikos-Danelis, J., Endocrinology97 (1975) 597.

    Article  CAS  PubMed  Google Scholar 

  27. Taché, Y., Du Russeay, P., Taché, J., Selye, H., and Collu, R., Neuroendocrinology22 (1976) 325.

    Article  PubMed  Google Scholar 

  28. Mikulaj, L., Kventansky, R., and Murgas, K., Rev. Czch. Med.20 (1974) 162–169.

    CAS  Google Scholar 

  29. Longoni, R., Mulas, A., Oderfeld-Novak, B., Pepeu, J. M., and Pepeu, G., Neuropharmacology15 (1976) 283.

    Article  CAS  PubMed  Google Scholar 

  30. Kasa, P., Szepesy, G., Gulya, K., Banasaghy, K., and Rackonczay, Z., Neurochem. Int.4 (1982) 185.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant from the National Aeronautics and Space Administration (NSG 2183 and NAG 2-411), a grant from the National Institutes of Health (NIH RR 0811) and a grant from the Division of Research Resources (NIH grant RR 03020).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahba, Z.Z., Soliman, K.F.A. Effect of stress on choline acetyltransferase activity of the brain and the adrenal of the rat. Experientia 48, 265–268 (1992). https://doi.org/10.1007/BF01930471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01930471

Key words

Navigation