Skip to main content
Log in

Towards an understanding of the role of glutamate in neurodegenerative disorders: energy metabolism and neuropathology

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

It is thought that impairment, of energy metabolism that results in deterioration of membrane function, leading to loss of the Mg2+ block on NMDA receptors, and allowing persistent activation of these receptors by glutamate, might be a cause of neuronal death in neurodegenerative disorders. Studies in rodents using mitochondrial respiratory chain toxins, such as aminooxyacetic acid, 1-methyl-4-phenylpyridinium, malonic acid and 3-nitropropionic acid, suggest that such processes may indeed be involved in neurotoxicity. Striatal and nigral degeneration induced by mitochondrial toxins in rodents resembles the neuropathology seen in humans suffering from Huntington's or Parkinson's disease, and can be prevented either by decortication or by NMDA receptor antagonists. Such experimental observations suggest that glutamate may be involved in neuronal death leading to neurodegenerative disorders in humans. If so, glutamate antagonists may offer a therapeutic approach for retarding the progression of these disabling disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albin, R. L., and Greenamyre, J. T., Alternative excitotoxic hypothesis. Neurology42 (1992) 733–738

    PubMed  Google Scholar 

  2. Alston, T. A., Mela, L., and Bright, H. J., 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc. natl. Acad. Sci USA74 (1977) 3767–3771.

    PubMed  Google Scholar 

  3. Beal, M. F., Brouillet, E., Jenkins, B., Ferrante, R. J., Kowall, N. W., Miller, J. M., Storey, E., Strivastava, R., Rosen, B. R., and Hyman, B. T., Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci.13 (1993) 4181–4192.

    PubMed  Google Scholar 

  4. Beal, M. F., Brouillet, E., Jenkins, B., Henshaw, R., Rosen B., and Hyman, B. T., Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J. Neurochem.61 (1993) 1147–1150.

    PubMed  Google Scholar 

  5. Beal, M. F., Brouillet, E., Srivastava, R., de Socarraz, H., Jenkins, B., Rosen, B., and Hyman, B. T., Both local and systemic administration of the mitochondrial toxin sodium azide result in striatal lesions by an excitotoxic mechanism. Neurology43 (1993) A407.

    Google Scholar 

  6. Beal, M. F., Hyman, B. T., and Koroshetz, W., Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci.16 (1993) 125–131.

    Article  PubMed  Google Scholar 

  7. Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J., and Martin, J. B., Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature321 (1986) 168–171.

    Article  PubMed  Google Scholar 

  8. Beal, M. F., Swartz, K. J., Hyman, B. T., Storey, E., Finn, S. F., and Koroshetz, W., Aminooxyacetic acid results in excitotoxic lesions by a novel indirect mechanism. J. Neurochem.57 (1991) 1068–1073.

    PubMed  Google Scholar 

  9. Bowling, A. C., Mutisya, E. M., Walker, L. C., Price, D. L., Cork, L. C., and Beal, M. F., Age-dependent impairment of mitochondrial function in primate brain. J Neurochem.60 (1993) 1964–1967.

    PubMed  Google Scholar 

  10. Brennan, W. A., Bird, E. D., and Aprillo, V. R., Regional mitochondrial metabolism in Huntington's disease brain. J. Neurochem.44 (1985) 1448–1450.

    Google Scholar 

  11. Brouillet, E., and Beal, M. F., NMDA antagonists partially protect against MPTP induced neurotoxicity in mice. Neuro report4 (1993) 387–390.

    Google Scholar 

  12. Brouillet, E., Jenkins, B. G., Hyman, B. T., Ferrante, R. J., Kowall, N. W., Srivastava, R., Roy, D. S., Rosen, B. R., and Beal, M. F., Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem.60 (1993) 356–359.

    PubMed  Google Scholar 

  13. Brouillet, E. P., Shinobu, L., McGarvey, U., and Beal, M. F., Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp. Neurol.120 (1993) 89–94.

    Article  PubMed  Google Scholar 

  14. Chan, P., Langston, J. W., and Di Monte, D., Relationship between the effects of MPTP on energy metabolism and levels of L-aspartate and L-glutamate in the mouse brain. Soc. Neurosci. Abstr.18 (1992) 1103.

    Google Scholar 

  15. Corsini, G. U., Vaglini, F., Fornai, F., Saginario, A., and Zuddas, A., (+)MK 801 prevents dopaminergic perikarya damage in MPTP and acetaldehyde-treated mice. Posters Neurosci.1 (1991) 33–36.

    Google Scholar 

  16. Dalia, A., Neff, N. H., and Hadjiconstantinou, M., GM1 ganglioside improves dopaminergic markers of rat mesencephalic cultures treated with MPP+. J. Neurosci.13 (1993) 3104–3111.

    PubMed  Google Scholar 

  17. Dawson, V. L., Dawson, T. M., London, E. E., Bredt, D. S., and Snyder, S. H., Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. natl Acad. Sci. USA88 (1991) 6368–6371.

    PubMed  Google Scholar 

  18. Di Monte, D., Jewell, S. A., Ekstrom, C., Sandy, M. S., and Smith, M. T., 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP+) cause rapid ATP depletion in isolated hepatocytes. Bioch. biophys. Res. Commun.137 (1986) 310–315.

    Article  Google Scholar 

  19. Drapier, J.-C., and Hibbs, J. B., Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effect cells. J. Immunol.140 (1988) 2829–2838.

    PubMed  Google Scholar 

  20. Finiels-Marlier, F., Marini, A. M., Williams, P., and Paul, S. M., The N-methyl-D-aspartate antagonist MK-801 fails to protect dopaminergic neurons from 1-methyl-4-phenylpyridinium toxicity in vitro. J. Neurochem.60 (1993) 1968–1971.

    PubMed  Google Scholar 

  21. Freese, A., Finklestein, S. P., and DiFiglia, M., Basis fibroblast growth factor protects striatal neurons in vitro from NMDA-receptor mediated excitotoxicity. Brain Res.575 (1993) 351–355.

    Article  Google Scholar 

  22. Garthwaite, J., Southam, E., and East, S. J., Glutamate receptors, nitric oxide, and cyclic GMP, in: Excitatory Amino Acids and Second Messenger Systems, pp. 87–101. Eds V. I. Teichberg and L. Turski. Springer, Berlin 1991.

    Google Scholar 

  23. Gould, D. H., and Gustine, D. L., Basal ganglia degeneration, myelin alterations, and enzyme inhibition in mice by the plant toxin 3-nitropropanoic acid. Neuropath. appl. Neurobiol.8 (1982) 377–393.

    Google Scholar 

  24. Greene, J. G., Porter, R. H. P., Eller, R. V., and Greenamyre, J. T., Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoxic” lesion in rat striatum. J. Neurochem.61 (1993) 1151–1154.

    PubMed  Google Scholar 

  25. Hadjiconstantinou, M., Rossetti, Z. L., Paxton, R. C., and Neff, N. H., Administration of GM1 ganglioside restores the dopamine content in striatum after chronic treatment with MPTP. Neuropharmacology25 (1986) 1075–1077.

    Article  PubMed  Google Scholar 

  26. Heikkila, R. E., Nicklas, W. J., Vyas, I., and Duvoisin, R. C., Dopaminergic toxicity of rotenone and the 1-methyl-4 phenylpyridinium ion after their stereotaxic administration to rats: implication for mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci. Lett.62 (1985) 389–394.

    Article  PubMed  Google Scholar 

  27. Hibbs, J. B., Overview of cytotoxic mechanisms and defense of the intracellular environment against microbes, in: The Biology of Nitric Oxide — Enzymology, Biochemistry and Immunology, pp. 201–206. Eds S. Moncada, M. A. Marletta, J. B. Hibbs, and E. A. Higgs. Portland Press, London and Chapel Hill 1992.

    Google Scholar 

  28. Hibbs, J. B., Taintor, R. R., and Vavrin, Z., Macrophage cytotoxicity: role for L-arginine deiminase activity and imino nitrogen oxidation to nitrite. Science235 (1987) 473–476.

    PubMed  Google Scholar 

  29. Higashi, H., and Yamagata, T., Mechanism for ganglioside-mediated modulation of a calmodulin-dependent enzyme. J. biol. Chem.267 (1992) 9839–9843.

    PubMed  Google Scholar 

  30. Higgins, D. S., and Greenamyre, J. T., Dihydrorotenone binding in Alzheimer's disease: a preliminary study. Neurology43 (1993) A251.

    Google Scholar 

  31. Ikeda, J., Kashimura, J., Morita, I., and Murota, S., Endogenous nitric oxide inhibits glutamate-induced calcium influx exclusively in the NADPH diaphorase containing neurons. J. cereb. Blood Flow Metab.13 (1993) S39.

    Google Scholar 

  32. Izumi, Y., Benz, A. M., Clifford, B. B., and Zorumski, C. F., Neurotoxic effects of sodium nitroprusside in rat hippocampal slices. Exp. Neurol.121 (1993) 14–23.

    Article  PubMed  Google Scholar 

  33. Jenner, P., Schapira, A. H. V. and Marsden, C. D., New insights into the cause of Parkinson's disease. Neurology42 (1992) 2241–2250.

    PubMed  Google Scholar 

  34. Koroshetz, W. J., Jenkins, B., Rosen, B., Beal, M. F., Ubiquinone lowers occipital lactate levels in patients with Huntington's disease. Neurology43 (1993) A334.

    Google Scholar 

  35. Kharlamov, A., Guidotti, A., Costa, E., Hayes, R., and Armstrong, D., Semisynthetic sphingolipids prevent protein kinase C translocation and neuronal damage in the perifocal area following a photochemically induced thrombotic brain cortical lesion. J. Neurosci.13 (1993) 2483–2494.

    PubMed  Google Scholar 

  36. Kupsch, A., Löschmann, P.-A., Sauer, H., Arnold, H., Renner, P., Pufal, D., Burg, M., Wachtel, H., ten Bruggencate, G., and Oertel, W. H., Do NMDA receptor antagonists protect against MPTP-toxicity? Biochemical and immunocytochemical analyses in black mice. Brain Res.592 (1992) 74–83.

    Article  PubMed  Google Scholar 

  37. Lange, K. W., Löschmann, P.-A., Sofic, E., Burg, M., Horowski, R., Kalveram, D. T., Wachtel, H., Riederer, P., The competitive NMDA antagonist CPP protects substantia nigra from MPTP-induced degeneration in primates. Naunyn-Schmiedeberg's Arch. Pharmac.348 (1993) 569–575.

    Google Scholar 

  38. Lange, K. W., Youdim, M. B. H., and Riederer, P., Neurotoxicity and neuroprotection in Parkinson's disease. J. neural Transm. S38 (1992) 27–44.

    Google Scholar 

  39. Lei, S. Z., Pan, Z.-H., Aggarwal, S. K., Chen, H.S. V., Hartman, J., Sucher, N. J., and Lipton, S. A., Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron8 (1992) 1087–1099.

    Article  PubMed  Google Scholar 

  40. Lipartiti, M., Lazzaro, A., and Manev, H., Ganglioside derivative LIGA 20 reduces NMDA neurotoxicity in neonatal rat brain. Neuroreport3 (1992) 919–921.

    PubMed  Google Scholar 

  41. Lipton, S. A., Choi, Y.-B., Pan Z.-H., Lei, S. Z., Chen, H.-S. V., Sucher, N. J., Loscalzo, J., Singel, D. J., and Stamler, J. S., A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature364 (1993) 626–632.

    Article  PubMed  Google Scholar 

  42. Loiacono, R. E., and Beart, P. M., Hippocampal lesions induced by microinjection of the nitric oxide donor nitroprusside. Eur. J. Pharmac.216 (1993) 331–333.

    Article  Google Scholar 

  43. Ludolph, A. C., He, F., Spencer, P. S., Hammerstad, J., and Sabri, M., 3-Nitropropionic acid — Exogenous animal neurotoxin and possible human striatal toxin. Can. J. Neurol. Sci.18 (1991) 492–498.

    PubMed  Google Scholar 

  44. Ludolph, A. C., Seelig, M. O., Ludolph, A., Novitt, P., Allen, C. M., Spencer, P. S., and Sabri, M. I., 3-Nitropropionic acid decreases cellular energy levels and causes neuronal degeneration in cortical explants. Neurodegeneration1 (1992) 21–28.

    Google Scholar 

  45. Manev, H., Favron, M., Vicini, S., Guidotti, A., and Costa, E., Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: protection by synthetic derivatives of endogenous sphingolipids. J. Pharmac. exp. Ther.252 (1990) 419–427.

    Google Scholar 

  46. Manev, H., Guidotti, A., and Costa, E., Protection by gangliosides against glutamate excitotoxicity. Adv. Lipid Res.25 (1993) 269–288.

    PubMed  Google Scholar 

  47. Manzoni, O., and Bockaert, J., Nitric oxide synthase activity endogenously modulates NMDA receptors. J. Neurochem.61 (1993) 368–370.

    PubMed  Google Scholar 

  48. Mattson, M. P., Zhang, Y., and Bose, S., Growth factors prevent mitochondrial dysfunction loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp. Neurol.121 (1993) 1–13.

    Article  PubMed  Google Scholar 

  49. McMaster, O. G., Du, F., French, E. D., and Schwarcz, R., Focal injection of aminooxyacetic acid produces seizures and lesions in rat hippocampus: evidence for mediation by NMDA receptors. Exp. Neurol.113 (1991) 378–385.

    Article  PubMed  Google Scholar 

  50. Mihatsch, W., Russ, H., and Przuntek, H., Intracerebroventricular administration of simultaneously administered nomifensine, deprenyl, and 1-t-butyl-4, 4-diphenylpiperdine. J. Neural Transm.71 (1988) 177–188.

    Article  PubMed  Google Scholar 

  51. Michel, P. P., and Agid, Y., The glutamate antagonist, MK-801, does not prevent dopaminergic cell death induced by the 1-methyl-4-phenylpyridinium ion (MPP+) in rat dissociated mesencephalic cultures. Brain Res.597 (1992) 233–240.

    Article  PubMed  Google Scholar 

  52. Miller, R. J., Murphy, S. N., and Glaum, S. R., Neuronal Ca2+ channels and their regulation by excitatory amino acids. Ann. New York Acad. Sci. 568 (1989) 149–158.

    Google Scholar 

  53. Nakata, N., Kato, H., and Kogure, K., Protective effects of basic fibroblast growth factor against hippocampoil neuronal damage following cerebral ischemia in the gerbil. Brain Res.605 (1993) 354–356.

    Article  PubMed  Google Scholar 

  54. Nicklas, W. J., Vyas, I., and Heikkila, R. E., Inhibition of NADH-linked oxidation in brain mitochondria by MPP+, a metabolite of the neurotoxin MPTP. Life Sci. 36 (1985) 2503–2508.

    Article  PubMed  Google Scholar 

  55. Nicotera, P., Bellomo, G., and Orrenius, S., Calcium-mediated mechanisms in chemically induced cell death. Annu. Rev. Pharmax. Toxic.32 (1992) 449–470.

    Article  Google Scholar 

  56. Nowicki, J. P., Duval, H., Poignet, H., and Scatton, B., Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur. J. Pharmac.204 (1991) 339–340.

    Article  Google Scholar 

  57. Nozaki, K., Finklestein, S. P., and Beal, M. F., Basic fibroblast growth factor protects against hypoxia-ischemia and NMDA neurotoxicity in neonatal rats. J. cereb. Blood Flow Metab.13 (1993) 221–228.

    PubMed  Google Scholar 

  58. Novelli, A., Reilly, J. A., Lysko, P. G., Henneberry, R. C., Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res.451 (1988) 205–212.

    Article  PubMed  Google Scholar 

  59. Olney, J. W., Excitatory amino acids and neuropsychiatric disorders. Biol. Psychiatry26 (1989) 505–525.

    Article  PubMed  Google Scholar 

  60. Otto, D. and Unsicker, K., Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice. J. Neurosci.10 (1990) 1912–1921.

    PubMed  Google Scholar 

  61. Parker, W. D., Boyson, S. J., Luder, A. S., and Parks, J. K., Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington's disease. Neurology40 (1990) 1231–1234.

    PubMed  Google Scholar 

  62. Parker, W. D., Boyson, S. J., and Parks, J. K., Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann. Neurol.26 (1989) 719–723.

    Article  PubMed  Google Scholar 

  63. Parker, W. D., Filley, C. M., and Parks, J. K., Cytochrome oxidase deficiency in Alzheimer's disease. Neurology 40 (1990) 1302–1303.

    PubMed  Google Scholar 

  64. Santiago, M., Venero, J. L., Machado, A., and Cano, J., In vivo protection of striatum from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Brain Res.586 (1992) 203–207.

    Article  PubMed  Google Scholar 

  65. Schapira, A. H. V., Mann, V. M., Cooper, J. M., Dexter, D., Daniel, S. E., Jenner, P., Clark, J. B., and Marsden, C. D., Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem.55 (1990) 2142–2145.

    PubMed  Google Scholar 

  66. Schneider, J. S., Pope, A., Simpson, K., Taggart, J., Smith, M. G., and DiStefano, L., Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment. Science256 (1992) 843–846.

    PubMed  Google Scholar 

  67. Schneider, J. S., Stull, N., DiStefano, L., and Iacovitti, L., Increased potency of orally active semisynthetic sphingolipids compared GM1 ganglioside: in vivo and in vitro studies. Soc. Neurosci. Abstr.19 (1993) 1052.

    Google Scholar 

  68. Schöls, L., Reichmann, H., Langkafel, M., Kuhn, W., and Przuntek, H., Mitochondrial disorders in cerebellar ataxias. Mov. Disorders7 (1992) S44.

    Google Scholar 

  69. Schon, E. A., Mitochondrial disorders in muscle, Curr. Opinion Neurol. Neurosurg.6 (1993) 19–26.

    Google Scholar 

  70. Schwarcz, R., Speciale, C., and Turski, W. A., Kynurenines, glia and the pathogenesis of neurodegenerative disorders, in: Parkinsonism and Aging, pp. 97–105. Eds D. B. Calne, G. Comi, D. Crippa, R. Horowski and M. Trabucchi, Raven Press, New York 1990.

    Google Scholar 

  71. Shoffner, J. M., Watts, R. L., Juncos, J. L., Torroni, A., and Wallace, D. C., Mitochondrial oxidative phosphorylation defects in Parkinson's disease. Ann. Neurol.30 (1991) 332–339.

    Article  PubMed  Google Scholar 

  72. Simonian, N. A., and Hyman, B. T., Cytochrome oxidase is altered in the hippocampal formation in Alzheimer's disease. Neurology43 (1993) A251.

    Google Scholar 

  73. Simpson, J. R., and Isacson, O., Mitochondrial impairment reduces the threshold for in vivo NMDA-mediated neuronal death in the striatum. Exp. Neurol.121 (1993) 57–64.

    Article  PubMed  Google Scholar 

  74. Smith, R. P., Louis, C. A., Kruszyna, R., and Kruszyna, H., Acute neurotoxicity of sodium azide and nitric oxide. Fund. appl. Toxic.17 (1991) 120–127.

    Article  Google Scholar 

  75. Sonsalla, P. K., Zeevalk, G. D., Manzino, L., Giovanni, A., and Nicklas, W. J., MK-801 fails to protect against the dopaminergic neuropathology produced by systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice or intranigral 1-methyl-4-phenylpyridinium in rats. J. Neurochem.58 (1992) 1979–1982.

    PubMed  Google Scholar 

  76. Spina, M. B., Squinto, S. P., Miller, J., Lindsay, R. M., and Hyman, C., Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of glutathione system. J. Neurochem.59 (1992) 99–106.

    PubMed  Google Scholar 

  77. Stamler, J. S., Singel, D. J., and Loscalzo, J., Biochemistry of nitric oxide and its redox-activated forms. Science258 (1992) 1898–1902.

    PubMed  Google Scholar 

  78. Storey, E., Hyman, B. T., Jenkins, B., Brouillet, E., Miller, J. M., Rosen, B. R., Beal, M. F., 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J. Neurochem.58 (1992) 1975–1978.

    PubMed  Google Scholar 

  79. Srivastava, R., Brouillet E., Beal, M. F., Storey, E., and Hyman, B. T., Blockade of 1-methyl-4-phenylpyridinium ion (MPP+) nigral toxicity in the rat by prior decortication or MK-801 treatment: a stereological estimate of neuronal loss. Neurobiol. Aging14 (1993) 295–301.

    Article  PubMed  Google Scholar 

  80. Tabatabaei, A., Perry, T. L., Hansen, S., and Krieger, C., Partial effect of MK-801 on MPTP-induced reduction of striatal dopamine in mice. Neurosci. Lett141 (1992) 192–194.

    Article  PubMed  Google Scholar 

  81. Turski, L., Excitatory amino acid antagonist and Parkinson's disease in: Parkinson's Disease — From Basic Research and Early Diagonosis to Long-term Treatment, pp. 97–114. Eds U. K. Rinne, T. Nagatsu and R. Horowski. Medicom, Bussum 1991.

    Google Scholar 

  82. Turski, L., Bressler, K., Rettig, K.-J., Löschmann, P.-A., and Wachtel, H., Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature349 (1991) 414–418.

    Article  PubMed  Google Scholar 

  83. Turski, L., and Melamed, E., Is there a role for excitatory amino acid antagonists? Parkinson's Disease — Controversial Issues in Therapy, pp. 44–53. Eds C. D. Marsden, and W. H. Oertel. Medicom, Bussum 1993.

    Google Scholar 

  84. Turski, L., and Stephens, D. N., Excitatory amino acid antagonists protect mice against MPP+ seizures. Synapse10 (1992) 120–125.

    Article  PubMed  Google Scholar 

  85. Turski, W. A., Aminooxyacetic acid produces excitotoxic lesions in the rat substantia nigra. Naunyn-Schmiedebergs Arch. Pharmac.344 (1991) R67.

    Google Scholar 

  86. Turski, W. A., Urbańska, E., Sieklucka, M., and Ikonomidou, C., Quinolinate-like neurotoxicity produced by aminooxyacetic acid in rat striatum. 1st International Congress on Amino Acid Research, Vienna — August 7–12, 1989, Book of abstracts.

  87. Turski, W. A., Urbańska, E., Sieklucka, M., and Ikonomidou, C., Quinolinate-like neurotoxicity produced by aminooxyacetic acid in rat striatum. Amino Acids2 (1992) 245–253.

    Google Scholar 

  88. Urbańska, E., Ikonomidou, C., Sieklucka, M., and Turski, W. A., Aminooxyacetic acid produces excitotoxic lesions in the rat striatum. Soc. Neurosci. Abstr.15 (1989) 764.

    Google Scholar 

  89. Urbańska, E., Ikonomidou, C., Sieklucka, M., and Turski, W. A., Aminooxyacetic acid produces excitotoxic lesions in the rat striatum. Synapse9 (1991) 129–135.

    Article  PubMed  Google Scholar 

  90. Wallace, D. C., Mitochondrial genetics: a paradigm for aging and degenerative diseases. Science256 (1992) 628–632.

    PubMed  Google Scholar 

  91. Youdim, M. B. H., The biology of toxic events in Parkinson's disease, in: Progress in Research on Neurodegeneration, Vol. I, pp. 67–86. Eds D. B. Calne, R. Horowski, Y. Mizuno, W. H. Poewe, P. Riederer, and M. B. H. Youdim, Birkhäuser, Boston 1993.

    Google Scholar 

  92. Zeevalk, G. D., and Nicklas, W. J., Chemically induced hypoglycemia and anoxia: relationship to glutamate receptor-mediated toxicity in retina. J. Pharmac. exp. Ther.253 (1990) 1285–1292.

    Google Scholar 

  93. Zeevalk, G. D., and Nicklas, W. J., Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition. J. Pharmac. exp. Ther.257 (1991) 870–878.

    Google Scholar 

  94. Zuddas, A., Oberto, G., Vaglini, F., Fascetti, F., Fornai, F., and Corsini, G. U., MK 801 prevents MPTP-induced parkinsonism in primates. J. Neurochem.59 (1992) 733–739.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turski, L., Turski, W.A. Towards an understanding of the role of glutamate in neurodegenerative disorders: energy metabolism and neuropathology. Experientia 49, 1064–1072 (1993). https://doi.org/10.1007/BF01929915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01929915

Key words

Navigation