Skip to main content
Log in

Is ATP synthesized by a vacuolar-ATPase in the extremely halophilic bacteria?

  • Multi-author Review
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The proton-dependent synthesis of ATP was demonstrated in representative members of the generaHalobacterium, Haloarcula, andHaloferax. In all cases, synthesis was not inhibited by nitrate or N-ethylmaleimide, inhibitors of the vacuolar-like ATPase found in Archaea, but was affected by azide, an inhibitor of F0F1-ATP syntheses. These observations extend the earlier observations withHalobacterium saccharovorum and suggest that ATP synthesis in these organisms is brought about by an F0F1-APT synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dane, M., Steinert, K., Esser, K., Bickelsandkotter, S., and Rodriguez-Valera, F., Properties of the plasma membrane ATPase of the halophilic archaebacteriaHaloferax mediterranei andHaloferax volcanii. Z. Naturf. C47 (1992) 835–844.

    Google Scholar 

  2. Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M., Molecular cloning of the β-subunit of a possible non-F0F1-type ATP synthase from the acidothermophilic archaebacterium,Sulfolobus acidocaldarius, J. biol. Chem.263 (1988) 17251–17254.

    PubMed  Google Scholar 

  3. Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M., The membrane-associated ATPase fromSulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from the primary structure of its α-subunit. J. biol. Chem.263 (1988) 6012–6015.

    PubMed  Google Scholar 

  4. Dundas, I. E. D., and Halovorson, H. O., Arginine metabolism inHalobacterium salinarium, an obligatory halophilic bacterium. J. Bact.91 (1966) 113–119.

    PubMed  Google Scholar 

  5. Fernandez-Castillo, R., Rodriguez-Valera, F., Gonzalez-Ramos, J., and Ruiz-Berraquero, F., Accumulation of poly(β-hydroxybutyrate) by halobacteria. Appl. environ. Microbiol.51 (1986) 214–216.

    Google Scholar 

  6. Forgac, M., Structure and function of vacuolar class of ATP-driven proton pumps. Physiol. Rev.69 (1989) 765796.

    Google Scholar 

  7. Gogarten, J. P., and Taiz, L., Evolution of proton pumping ATPases: rooting the tree of life, Photosynth. Res.33 (1992) 137–146.

    Article  Google Scholar 

  8. Hartmann, R., and Oesterhelt, D., Bacteriorhodopsin-mediated photophorylation inHalobacterium halobium. Eur. J. Biochem.77 (1977) 325–335.

    Article  PubMed  Google Scholar 

  9. Hartmann, R., Sickinger, H.-D., and Oesterhelt, D., Anaerobic growth of halobacteria. Proc. natl Acad. Sci. USA77 (1980) 3821–3825.

    PubMed  Google Scholar 

  10. Hochstein, L. I., ATP synthesis inHalobacterium saccharovorum: evidence that synthesis may be catalyzed by an F0F1-ATP synthase. FEMS Microbiol. Lett.97 (1992) 155–160.

    Article  PubMed  Google Scholar 

  11. Hochstein, L. I., Kristjannson, H., and Altekar, W., The purification and subunit structure of a membrane-bound ATPase from the archaebacteriumHalobacterium saccharovorum. Biochem. biophys. Res. Commun.147 (1985) 295–300.

    Article  Google Scholar 

  12. Hochstein, L. I., and Stan-Lotter, H., Purification and properties of an ATPase fromSulfolobus solfataricus. Archs Biochem. Biophys.295 (1992) 153–160.

    Article  Google Scholar 

  13. Ihara, K., Abe, T., Sugimura, K.-I., and Mukohata, Y., Halobacterial A-ATP synthase in relation to V-Atpase. J. exp. Biol.172 (1992) 475–485.

    PubMed  Google Scholar 

  14. Ihara, K., and Mukohata, Y., The ATP synthase ofHalobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits. Archs Biochem. Biophys.286 (1991) 111–116.

    Article  Google Scholar 

  15. Inatomi, K.-I., Characterization and purification of the membrane-bound ATPase of the archaebacteriumMethanosarcina barkeri, J. Bact.167 (1986) 837–841.

    PubMed  Google Scholar 

  16. Inatomi, K.-I., Eya, S., Maeda, M., and Futai, M., Amino acid sequence of the α and β subunits ofMethanosarcina barkeri ATPase deduced from cloned genes. J. biol. Chem.264 (1989) 10954–10959.

    PubMed  Google Scholar 

  17. Inatomi, K.-I., Kamagata, Y., and Nakamura, K., Membrane ATPase from the aceticlastic methanogenMethanothrix thermophila, J. Bact.175 (1993) 80–84.

    PubMed  Google Scholar 

  18. Konishi, J., Wakagi, T., Oshima, T., and Yoshida, M., Purification and properties of the ATPase solubilized from membranes of an acidophilic ArchaebacteriumSulfolobus acidocaldarius. J. Biochem., Tokyo102 (1987) 1379–1387.

    Google Scholar 

  19. Kristjansson, H., Partial purification and characterization of an ATPase in the archaebacterium,Halobacterium saccharovorum. Dissertation (1983) University of Maryland.

  20. Kristjansson, H., and Hochstein, L. I., Dicyclohexlcarbodimide-sensitive ATPase inHalobacterium saccharovorum. Archs Biochem. Biophys.241 (1985) 590–595.

    Article  Google Scholar 

  21. Kristjansson, H., Sadler, M., and Hochstein, L., Halobacterial adenosine triphosphatases and the adenosine triphosphatase fromHalobacterium saccharovorum. FEMS Microbiol. Rev.39 (1986) 151–157.

    Article  PubMed  Google Scholar 

  22. Lübben, M., Lünsdorf, H., and Schäfer, G., The plasma membrane ATPase of the thermoacidophilic archaebacteriumSulfolobus acidocaldarius. Purification and immunological relationships to F1-ATPases. Eur. J. Biochem.167 (1987) 211–219.

    Article  PubMed  Google Scholar 

  23. Meury, J., and Kohiyama, M., ATP is required for K+ active transport in the archaebacteriumHaloferax volcanii, Archs Microbiol.151 (1989) 530–536.

    Article  Google Scholar 

  24. Michel, H., and Oesterhelt, D., Electrochemical proton gradient across the cell membrane ofHalobacterium halobium: effect of N,N′-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. Biochemistry19 (1980) 4607–4614.

    Article  PubMed  Google Scholar 

  25. Mukohata, Y., Isoyama, M., and Fuke, A., ATP synthesis in cell envelope vesicles ofHalobacterium halobium driven by membrane potential and/or base-acid transition. J. Biochem.99 (1986) 1–8.

    PubMed  Google Scholar 

  26. Mukohata, Y., and Yoshida, M., Activation and inhibition of ATP synthesis in cell envelope vesicles ofHalobacterium halobium. J. Biochem.101 (1987) 311–318.

    PubMed  Google Scholar 

  27. Nanba, T., and Mukohata, Y., A membrane-bound ATPase fromHalobacterium halobium: purification and characterization. J. Biochem.102 (1987) 591–598.

    PubMed  Google Scholar 

  28. Scheel, E., and Schäfer, G., Chemiosmotic energy conversion and the membrane ATPase ofMethanolobus tindarius. Eur. J. Biochem.187 (1990) 727–735.

    Article  PubMed  Google Scholar 

  29. Stan-Lotter, H., Bowman, E. J., and Hochstein, L. I., Relationship of the membrane ATPase fromHalobacterium saccharovorum to vacuolar ATPase. Archs Biochem. Biophys.284 (1991) 116–119.

    Article  Google Scholar 

  30. Stan-Lotter, H., and Hochstein, L. I., A comparison of an ATPase from the archaebacteriumHalobacterium saccharovorum with the F1 moeity from theEscherichia coli ATP synthase. Eur. J. Biochem.179 (1989) 155–160.

    Article  PubMed  Google Scholar 

  31. Sumi, M., Sato, M. H., Denda, K., Date, T., and Yoshida, M., A DNA fragment homologous to F1-ATPase β subunit was amplified from genomic DNA ofMethanosarcina barkeri. FEBS Lett.314 (1992) 207–210.

    Article  PubMed  Google Scholar 

  32. Tomlinson, G. A., and Hochstein, L. I.,Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing extremely halophilic bacterium. Can. J. Microbiol.22 (1976) 587–591.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochstein, L.I., Lawson, D. Is ATP synthesized by a vacuolar-ATPase in the extremely halophilic bacteria?. Experientia 49, 1059–1063 (1993). https://doi.org/10.1007/BF01929914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01929914

Key words

Navigation