Skip to main content
Log in

Energy-transducing proteins in thermophilic biomembranes

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Biomembranes are the major site of energy transduction. The chemisomotic theory of energy transduction is based on the following four major systems (i) H+-ATPase which is composed of a catalytic portion (F1) and a H+-channel (F o), (ii) electron transport components, (iii) H+-linked porters, and (iv) a H+-impermeable lipid bilayer which is plugged through by systemsi toiii that are specially oriented to translocate H+.

Studies on the molecular mechanism of energy transduction have been hampered by the impurity, instability and complexity of preparations of membrane proteins from mesophilic organism. However, using stable, simple membrane proteins from a thermophilic bacterium, we obtained the following results:

  1. 1)

    Thermophilic H+-ATPase was dissociated into 5 subunits ofF 1 and 3 subunits ofF o and their functions and structures were studied by reconstitution.F 1 was crystallized.

  2. 2)

    Thermophilic cytochrome oxidase, cytochromec and NADH-dehydrogenase were purified. In contrast to the complex mitochondrial cytochrome oxidase (7 subunits) and NADH-dehydrogenase (3 subunits), the purified thermophilic proteins were shown to be composed of single components.

  3. 3)

    H+-linked porters such as a H+-driven amino acid carrier and a Na+-H+ antiporter were characterized.

  4. 4)

    Thermophilic lipids were shown to be completely saturated. Using these stable lipids, liposomes capable of H+-driven vectorial reactions including net ATP synthesis and alanine transport were reconstituted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babakov, A.V., Vasilov, R.G. (1979. Mg2+-dependent adenosine triphosphatase fromStreptococcus faecalis membrane. I. Isolation and subunit composition.Biorg. Khimiya 5:119

    Google Scholar 

  2. Bengis-Garber, C., Gromet-Elhanan, Z. 1979. Purification of the energy-transducing adenosine triphosphatase complex fromRhodospirillum rubrum.Biochemistry 18:3577

    PubMed  Google Scholar 

  3. Boyer, P.D., Chance, B., Ernster, L., Mitchell, P., Racker, E., Slater, E.C. 1977. Oxidative phosphorylation and photophosphorylation.Annu. Rev. Biochem. 46:955

    Google Scholar 

  4. Brand, M.D., Lehninger, A.L. 1977. H+/ATP ratio during ATP hydrolysis by mitochondria: Modification of the chemiosmotic theory.Proc. Nat. Acad. Sci. USA 74:1955

    PubMed  Google Scholar 

  5. Downie, J.A., Gibson, F., Cox, G.R. 1979. Membrane adenosine triphosphatases of prokaryotic cells.Annu. Rev. Biochem. 48:103

    PubMed  Google Scholar 

  6. Esch, S.F., Allison, W.S. 1978. Identification of a tyrosine residue at a nucleotide binding site in the β subunit of a mitochondrial ATPase withp-fluorosulfonyl-[14C]-benzoyl-5′-adenosine.J. Biol. Chem. 253:6100

    PubMed  Google Scholar 

  7. Foster, D.L., Fillingame, R.H. 1979. Energy-transducing H+-ATPase ofEscherichia coli; Purification, reconstitution, and subunit composition.J. Biol. Chem. 254:8230

    PubMed  Google Scholar 

  8. Friedle, P., Friedl, C., Schairer, H.U. 1979. The ATP synthetase ofEscherichia coli K12: Purification of the enzyme and reconstitution of energy-transducing activities.Eur. J. Biochem. 100:175

    PubMed  Google Scholar 

  9. Friedman, S.M. (editor). 1978. Biochemistry of Thermophily. Academic Press, New York

    Google Scholar 

  10. Fry, M., Green, D.E. 1979. Ion-channel component of cytochrome oxidase.Proc. Nat. Acad. Sci. USA 76:2664

    PubMed  Google Scholar 

  11. Gautheron, D.C., Julliard, J.H. 1979. Isolation of glutamate carrier system from pig heart mitochondria and incorporation into liposomes.In: Methods in Enzymology. S. Fleischer and L. Packer, editors. Vol. 56, p. 430. Academic Press, New York

    Google Scholar 

  12. Goto, K., Hirata, H., Kagawa, Y. 1979. Na+−H+ antiport and substrate transport in thermophilic bacterium PS3.Seikagaku (abstr.) 51:896

    Google Scholar 

  13. Griffith D.E., Hyamus, R.L., Bertoli, E. 1977. Studies of energy linked reactions: Dihydrolipoate- and, oleate-dependent ATP synthesis in yeast promitochondria.FEBS Lett. 74:38

    PubMed  Google Scholar 

  14. Hamada, M., Palmieri, R.H., Russell, G.A., Kuby, S.A. 1979. Studies on adenosine triphosphate transphosphorylases XIV. Equilibrium binding properties of the crystalline rabbit and calf muscle ATP-AMP transphosphorylase (adenylate kinase) and derived peptide fragments.Arch. Biochem. Biophys. 195:155

    PubMed  Google Scholar 

  15. Hatefi, Y., Galante, Y.M., Figeri, L., Stiggall, D.L. 1978. Structure and composition of the mitochondrial energy transduction system.In: Structure and Function of Biomembrane K. Yagi, editor. p. 167. Japan Scientific Society Press, Tokyo

    Google Scholar 

  16. Hirata, H. 1979. Solubilization and purification of alanine carrier from thermophilic bacteria and reconstitution into vesicles capable of transport.Methods Enzymol. 56:430

    PubMed  Google Scholar 

  17. Hirata, H. 1979. Characterization of alanine transport by reconstituted proteoliposomes.In: Functions and Molecular Aspects of Biomembranes. E. Quagliariello, editor. p. 505. Elsevier, Amsterdam

    Google Scholar 

  18. Hirata, H., Sone, N., Yoshida, M., Kagawa, Y. 1977. Isolation of the alanine carrier from the membranes of a thermophilic bacterium and its reconstitution into vesicles capable of transport.J. Supramol. Struct. 6:77

    PubMed  Google Scholar 

  19. Hon-nami, K., Ohshima, T., Kihara, H., Kagawa, Y. 1979. Cytochromec-550 from a thermophilic bacterium PS3.biochem. Biophys. Res. Commun. 87:1066

    PubMed  Google Scholar 

  20. Kagawa, Y. 1967. Target size of components in oxiative phosphorylation. Studies with a linear accelerator.Biochim. Biophys. Acta 131:586

    PubMed  Google Scholar 

  21. Kagawa, Y. 1972. Reconstitution of oxidative phosphorylation.Biochim. Biophys. Acta 265:297

    PubMed  Google Scholar 

  22. Kagawa, Y. 1976. Transport activity of proteoliposomes reconstituted from crystalline ATPase or from solubilized alanine carrier.J. Cell. Physiol. 89:569

    PubMed  Google Scholar 

  23. Kagawa, Y. 1978. Reconstitution of the energy transformer, gate and channel: subunit reassembly, crystalline ATPase and ATP synthesis.Biochim. Biophys. Acta 505:45

    PubMed  Google Scholar 

  24. Kagawa, Y., Ariga, T. 1977. Determination of molecular species of phospholipids of thermophilic bacterium PS3 using mass-chromatography.J. Biochem. (Tokyo) 81:1161

    Google Scholar 

  25. Kagawa, Y., Ohno, K., Yoshida, M., Takeuchi, Y., Sone, N. 1977. Proton translocation by ATPase and bacteriorhodopsin.Fed. Proc. 36:1815

    PubMed  Google Scholar 

  26. Kagawa, Y., Racker, E. 1966. Partial resolution of the enzymes catalyzing oxidative phosphorylation: VIII. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenocatalyzing oxidative phosphorylation: IX. Reconstitution of oligomycin-sensitive adenosine triphosphatase.J. Biol. Chem. 241:2467

    PubMed  Google Scholar 

  27. Kagawa, Y., Racker, E. 1971. Partial resolution of the enzymes catalyzing oxidative phosphorylation: XXV. Reconstitution of vesicles catalyzing32Pi-adenosine triphosphate exchange.J. Biol. Chem. 246:5477

    Google Scholar 

  28. Kagawa, Y., Sone, N. 1979. DCCD-sensitive ATPase (TF o·F 1) from a thermophilic bacterium: Purification, dissociation into functional subunits, and reconstitution into vesicles capable of energy translocation.Methods Enzymol. 55:364

    PubMed  Google Scholar 

  29. Kagawa, Y., Sone, N., Hirata, H., Yoshida, M. 1979. Structure and function of H+-ATPase.J. Bioenerg. Biomembr. 11:39

    PubMed  Google Scholar 

  30. Kagawa, Y., Sone, N., Yoshida, M., Hirata, H., Okamoto, H. 1976. Proton translocating ATPase of a thermophilic bacterium: Morphology, subunits and chemical composition.J. Biochem (Tokyo) 80:141

    Google Scholar 

  31. Kozlov, I.A., Skulachev, V.P. 1977. H+-adenosine triphosphatase and membrane energy coupling.Biochim. Biophys. Acta 465:29

    Google Scholar 

  32. Langworthy, T.A. 1977. Long chain diglycerol tetraethers fromThermoplasma acidophilum.Biochim. Biophys. Acta 487:37

    PubMed  Google Scholar 

  33. Ludwig, B., Downer, N.W., Capaldi, R.A. 1979. Labeling of cytochromec oxidase with [35S] diazobenzene sulfonate. Orientation of this electron transfer complex in the inner mitochondrial membrane.Biochemistry 18:1401

    PubMed  Google Scholar 

  34. McCarty, R.E. 1979. Roles of a coupling factor for photophosphorylation in chloroplasts.Annu. Rev. Plant Physiol. 30:79

    Google Scholar 

  35. Mitchell, P. 1966. Chemiosmotic coupling in oxidative phosphorylation.Biol. Rev. 41:455

    Google Scholar 

  36. Mitchell, P. 1976. Vectorial chemistry and molecular mechanics of chemiosmotic coupling. Power transmission by proticity.Biochem. Soc. Trans. 4:399

    PubMed  Google Scholar 

  37. Nelson, N. 1976. Structure and function of chloroplast ATPase.Biochim. Biophys. Acta 456:314

    PubMed  Google Scholar 

  38. Ohshima, M., Ariga, T. 1975. ω-cyclohexyl fatty acids in acidophilic thermophilic bacteria. Studies on their presence, structure, and biosynthesis using precursors labeled with stable isotopes and radioisotopes.J. Biol. Chem. 250:6963

    PubMed  Google Scholar 

  39. Ohta, S., Nakanishi, M., Tsuboi, M., Yoshida, M., Kagawa, Y. 1978. Kinetics of hydrogen-deuterium exchange in ATPase from a thermophilic bacterium PS3.Biochem. Biophys. Res. Commun. 80:929

    PubMed  Google Scholar 

  40. Okamoto, H., Sone, N., Hirata, H., Yoshida, M., Kagawa, Y. 1977. Purified proton conductor in proton translocating adenosine triphosphatase of a thermophilic bacterium.J. Biol. Chem. 252:6125

    PubMed  Google Scholar 

  41. Penefsky, H.S. 1979. Mitochondrial ATPase.Adv. Enzymol. 49:223

    PubMed  Google Scholar 

  42. Perutz, M.E., Raidt, H. 1975. Stereochemical basis of heat stability in bacterial ferredoxins and haemoglobinA 2.Nature (London) 255:256

    Google Scholar 

  43. Pullman, M.E., Penefsky, H.S., Data, E.. 1960. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol stimulated adenosine triphosphatase.J. Biol. Chem. 235:3322

    PubMed  Google Scholar 

  44. Racker, E. 1976. A New Look at Mechanisms in Bioenergetics. Academic Press, New York

    Google Scholar 

  45. Rögner, M., Ohno, K., Hamamoto, T., Sone, N., Kagawa, Y. 1979. Net ATP synthesis in H+-ATPase macroliposomes by an external electric field.Biochem. Biophys. Res. Commun. 91:362

    PubMed  Google Scholar 

  46. Sebald, W., Hoppe, J., Wachter, E. 1979. Amino acid sequence of the ATPase proteolipid from mitochondria, chloroplasts and bacteria (wild type and mutant)In: Function and Molecular Aspects of Biomembrane Transport. E. Quagliariello, editor. p. 63. Elsevier, Amsterdam

    Google Scholar 

  47. Sone, N., Ikeba, K., Kagawa, Y. 1979. Inhibition of proton conduction by chemical modification of the membrane moiety of proton translocating ATPase.FEBS Lett. 97:61

    PubMed  Google Scholar 

  48. Sone, N., Ohyama, T., Kagawa, Y. 1979. Thermostable singleband cytochrome oxidase.FEBS Lett. 106:39

    PubMed  Google Scholar 

  49. Sone, N., Yoshida, M., Hirata, H., Kagawa, Y. 1975. Purification and properties of a dicyclohexyl-carbodiimide sensitive adenosine triphosphatase from a thermophilic bacterium.J. Biol. Chem. 250:7917

    PubMed  Google Scholar 

  50. Sone, N., Yoshida, M., Hirata, H., Kagawa, Y. 1977. Adenosine triphosphatase synthesis by an electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of a thermophilic bacterium.J. Biol. Chem. 252:2956

    PubMed  Google Scholar 

  51. Sone, N., Yoshida, M., Hirata, H., Kagawa, Y. 1978. Resolution of the membrane moiety of the H+-ATPase complex into two kinds of subunits.Proc. Nat. Acad. Sci. USA 75:4219

    PubMed  Google Scholar 

  52. Sone, N., Yoshida, M., Hirata, H., Okamoto, H., Kagawa, Y. 1976. Electrochemical potential of protons in vesicles reconstituted from purified, proton translocating adenosine triphosphatase.J. Membrane Biol. 30:121

    Google Scholar 

  53. Stiggall, D.L., Galante, Y.M., Hatefi, Y. 1978. Preparation and properties of an ATP-Pi exchange complex (Complex V) from bovine heart mitochondria.J. Biol. Chem. 253:956

    PubMed  Google Scholar 

  54. Thayer, W.P., Hinkle, P.C. 1975. Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles.J. Biol. Chem. 250:5336

    PubMed  Google Scholar 

  55. Tsuchiya, T., Rosen, B.P. 1976. Adenosine 5′-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles ofEscherichia coli.J. Bacteriol. 127:154

    PubMed  Google Scholar 

  56. Wakabayashi, T., Kubota, M., Yoshida, M., Kagawa, Y. 1977. Structure of ATPase (coupling factorTF 1) from a thermophilic bacterium. J. Mol. Biol.117:515

    PubMed  Google Scholar 

  57. Witt, H.T. 1979. Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field.Biochim. Biophys. Acta 505:355

    PubMed  Google Scholar 

  58. Yoshida, M., Okamoto, H., Sone, N., Hirata, H., Kagawa, Y. 1977. Reconstitution of thermostable ATPase capable of energy coupling from its purified subunits.Proc. Nat. Acad. Sci. USA 74:936

    PubMed  Google Scholar 

  59. Yoshida, M., Sone, N., Hirata, H., Kagawa, Y. 1977. Reconstitution of adenosine triphosphatase of thermophilic bacterium from purified individual subunits.J. Biol. Chem. 252:3480

    PubMed  Google Scholar 

  60. Yoshida, M., Sone, N., Hirata, H., Kagawa, Y., Ui, N. 1979. Subunit structure of adenosine triphosphatase: Comparison of the structure in thermophilic bacterium PS3 with those in mitochondria, chloroplasts andEscherichia coli.J. Biol. Chem. 254:9525

    PubMed  Google Scholar 

  61. Zuber, H. 1978. Comparative studies of thermophilic and mesophilic enzymes: Objectives problems, results.In. Biochemistry of Thermophily. S.M. Friedman, editor. p. 267. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagawa, Y. Energy-transducing proteins in thermophilic biomembranes. J. Membrain Biol. 55, 1–8 (1980). https://doi.org/10.1007/BF01926366

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01926366

Keywords

Navigation