Skip to main content
Log in

Altered proteoglycan gene expression and the tumor stroma

  • Multi-author Reviews
  • Proteoglycans
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Tumor stroma is a specialized form of tissue that is associated with epithelial neoplasms. Recent evidence indicates that significant changes in proteoglycan content occur in the tumor stroma and that these alterations could support tumor progression and invasion as well as tumor growth. Our main hypothesis is that the generation of tumor stroma is under direct control of the neoplastic cells and that, via a feedback loop, altered proteoglycan gene expression would influence the behavior of tumor cells. In this review, we will focus primarily on the work from our laboratory related to the altered expression of chondroitin sulfate proteoglycan and its role in tumor development and progression. The connective tissue stroma of human colon cancer is enriched in chondroitin sulfate and the stromal cell elements, primarily colon fibroblasts and smooth muscle cells, are responsible for this biosynthetic increase. These changes can be reproduced in vitro by using either tumor metabolites or co-cultures of human colon carcinoma cells and colon mesenchymal cells. The levels of decorin, a leucine-rich proteoglycan involved in the regulation of matrix assembly and cell proliferation, are markedly elevated in the stroma of colon carcinoma. These changes correlate with a marked increase in decorin mRNA levels and a concurrent hypomethylation of decorin gene, a DNA alteration associated with enhanced gene expression. Elucidation of decorin gene structure has revealed an unexpected degree of complexity in the 5′ untranslated region of the gene with two leader exons that are alternatively spliced to the second coding exon. Furthermore, a transforming growth factor beta (TGF-β)-negative element is present in the promoter region of decorin gene. This regulatory domain is likely to be implicated in the silencing of decorin gene by TGF-β and may contribute to the regulation of this matrix gene in the tumor stroma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adany, R., Heimer, R., Caterson, B., Sorrell, J. M., and Iozzo, R. V., Altered expression of chondroitin sulfate proteoglycan in the stroma of human colon carcinoma. J. biol. Chem.265 (1990) 11389–11396.

    Article  CAS  PubMed  Google Scholar 

  2. Adany, R., and Iozzo, R. V., Altered methylation of versican proteoglycan gene in human colon carcinoma. Biochem. biophys. Res. Commun.171 (1990) 1402–1413.

    Article  CAS  PubMed  Google Scholar 

  3. Adany, R., and Iozzo, R. V., Hypomethylation of the decorin proteoglycan gene in human colon cancer. Biochem. J.276 (1991) 301–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Angel, P., Baumann, I., Stein, B., Delius, H., Rahmsdorf, H. J., and Herrlich, P., 12-O-tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5′-flanking region. Molec. cell. Biol.7 (1987) 2256–2266.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bennett, V. D., and Adams, S. L., Identification of a cartilagespecific promoter within intron 2 of the chick α2(I) collagen gene. J. biol. Chem.265 (1990) 2223–2230.

    Article  CAS  PubMed  Google Scholar 

  6. Bidanset, D. B., Guidry, C., Rosenberg, L. C., Choi, H. U., Timpl, R., and Hook, M., Binding of the proteoglycan decorin to collagon type VI. J. biol. Chem.267 (1992) 5250–5256.

    Article  CAS  PubMed  Google Scholar 

  7. Bird, A., The essentials of DNA methylation. Cell70 (1992) 5–8.

    Article  CAS  PubMed  Google Scholar 

  8. Bonaldo, P., Russo, V., Bucciotti, F., Doliana, R., and Colombatti, A., Structural and functional features of the α3 chain indicate a bridging role for the chicken collagen VI in connective tissues. Biochemistry29 (1990) 1245–1254.

    Article  CAS  PubMed  Google Scholar 

  9. Breibart, R. E., Andreadis, A., and Nadal-Ginard, B., Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. A. Rev. Biochem.56 (1987) 467–495.

    Article  Google Scholar 

  10. Breuer, B., Schimdt, G., and Kresse, H., Non-uniform influence of transforming growth factor-β on the biosynthesis of different forms of small chondroitin sulphate/dermatan sulphate proteoglycan. Biochem. J.269 (1990) 551–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Broekelmann T. J., Limper, A. H., Colby, T. V., and McDonald, J. A., Transforming growth factorβ 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc. natl Acad. Sci. USA88 (1991) 6642–6646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Danielson, K. G., Fazzio, A., Cohen, I., Cannizzaro, L., Eichstetter, I., and Iozzo, R. V., Human decorin gene. Intronexon organization, discovery of two alternatively-spliced exons in the 5′ untranslated region and mapping of the gene to chromosome 12q23. Genomics15 (1993) 146–160.

    Article  CAS  PubMed  Google Scholar 

  13. Day, A. A., McQuillan, C. I., Termine, J. D., and Young, M. R., Molecular cloning and sequence analysis of the cDNA for small proteoglycan II of bovine bone. Biochem. J.248 (1987) 801–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dodge, G. R., Kovalszky, I., Chu, M-L., Hassell, J. R., McBride, O. W., Yi, H. F., and Iozzo, R. V., Heparan sulfate proteoglycan of human colon: Partial molecular cloning, cellular expression, and mapping of the gene (HSPG2) to the short arm of human chromosome 1. Genomics10 (1991) 673–680.

    Article  CAS  PubMed  Google Scholar 

  15. Dodge, G. R., Kovalszky, I., Hassell, J. R., and Iozzo, R. V., Transforming growth factor β alters the expression of heparan sulfate proteoglycan in human colon carcinoma cells. J. biol. Chem.265 (1990) 18023–18029.

    Article  CAS  PubMed  Google Scholar 

  16. Esko, J. D., Genetic analysis of proteoglycan structure, function and metabolism. Curr. Opin. Cell Biol.3 (1991) 805–816.

    Article  CAS  PubMed  Google Scholar 

  17. Esko, J. D., Rostand, K. S., and Weinke, J. L., Tumor formation dependent on proteoglycan biosynthesis. Science241 (1988) 1092–1096.

    Article  CAS  PubMed  Google Scholar 

  18. Heino, J., Kähäri, V-M., Mauviel, A., and Krusius, T., Human recombinant interleukin-1 regulates cellular mRNA levels of dermatan sulfate proteoglycan core protein. Biochem. J.252 (1988) 309–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iozzo, R. V., Neoplastic modulation of extracellular matrix: colon carcinoma cells release polypeptides that alter proteoglycan metabolism in colon fibroblasts. J. biol. Chem.260 (1985) 7464–7473.

    Article  CAS  PubMed  Google Scholar 

  20. Iozzo, R. V., Proteoglycans and neoplasia. Cancer Metastasis Rev.7 (1988a) 39–50.

    Article  CAS  PubMed  Google Scholar 

  21. Iozzo, R. V., Cell surface heparan sulfate proteoglycan and the neoplastic phenotype. J. cell. Biochem.37 (1988b) 61–78.

    Article  CAS  PubMed  Google Scholar 

  22. Iozzo, R. V., Bolender, R. P., and Wight, T. N., Proteoglycan changes in the intercellular matrix of human colon carcinoma. Lab. Invest.47 (1982) 124–138.

    CAS  PubMed  Google Scholar 

  23. Iozzo, R. V., and Müller-Glauser, W., Neoplastic modulation of extracellular matrix: Proteoglycan changes in the rabbit mesentery induced by V2 carcinoma cells. Cancer Res.45 (1985) 5677–5687.

    CAS  PubMed  Google Scholar 

  24. Iozzo, R. V., Sampson, P. M., and Schmitt, G., Neoplastic modulation of extracellular matrix: stimulation of chondroitin sulfate proteoglycan and hyaluronic acid synthesis in co-cultures of human colon carcinoma and smooth muscle cells. J. cell. Biochem.39 (1989) 355–378.

    Article  CAS  PubMed  Google Scholar 

  25. Iozzo, R. V., and Wight, T. N., Isolation and characterization of proteoglycans synthesized by human colon and colon carcinoma. J. biol. Chem.257 (1982) 11135–11144.

    Article  CAS  PubMed  Google Scholar 

  26. Kähäri, V-M., Larjava, H., and Uitto, J., Differential regulation of extracellular matrix proteoglycan gene expression. J. biol. Chem.266 (1991) 10608–10615.

    Article  PubMed  Google Scholar 

  27. Kähäri, V-M., Olsen, D. R., Rhudy, R. B., Carrillo, P., Chen Y. Q., and Uitto, J., Transforming growth factor-β upregulates elastin gene expression in human skin fibroblasts. Lab. Invest.66 (1992) 580–588.

    PubMed  Google Scholar 

  28. Kerr, L. D., Miller, D. B., and Matrisian, L. M., TGF-β1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence. Cell61 (1990) 267–278.

    Article  CAS  PubMed  Google Scholar 

  29. Kjellén, L., and Lindhal, U., Proteoglycans: structures and interactions. A. Rev. Biochem.60 (1991) 443–475.

    Article  Google Scholar 

  30. Knudson, W., Biswas, C., and Toole, B. P., Interaction between human tumor cells and fibroblasts stimulate hyaluronate synthesis. Proc. natl Acad. Sci. USA81 (1984) 6767–6771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kokenyesi, R. and Woessner, F. Jr., Purification and characterization of a small dermatan sulphate proteoglycan implicated in the dilatation of the rat uterine cervix. Biochem. J.260 (1989) 413–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krusius, T., and Ruoslahti, E., Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proc. natl Acad. Sci. USA83 (1986) 7683–7687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, W., Vergnes, J. P., Cournet, P. K., and Hassell, J. R., cDNA clone to chick corneal chondroitin/dermatan sulfate proteoglycan reveals identity to decorin. Archs Biochem. Biophys.296 (1992) 190–197.

    Article  CAS  Google Scholar 

  34. Merrilees, M. J., and Finlay, G. J., Human tumor cells in culture stimulate glycosaminoglycan synthesis by human skin fibroblasts. Lab. Invest.53 (1985) 30–36.

    CAS  PubMed  Google Scholar 

  35. Moses, H. L., Yang, E. Y., and Pietenpol, J. A., TGF-β stimulation and inhibition of cell proliferation: new mechanistic insights. Cell63 (1990) 245–247.

    Article  CAS  PubMed  Google Scholar 

  36. Murdoch A. D., Dodge, G. R., Cohen, I., Tuan, R. S., and Iozzo, R. V., Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/Perlecan): A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules and epidermal growth factor. J. biol. Chem.267 (1992) 8544–8557.

    Article  CAS  PubMed  Google Scholar 

  37. Nathan, C., and Sporn, M., Cytokines in context. J. Cell Biol.113 (1991) 981–986.

    Article  CAS  PubMed  Google Scholar 

  38. Nishimura, I., Muragaki, Y., and Olsen, B. R., Tissue-specific forms of type IX collagen-proteoglycan arise from the use of two widely separate promoters. J. biol. Chem.264 (1989) 20033–20041.

    Article  CAS  PubMed  Google Scholar 

  39. Ritzenthaler, J. D., Goldstein, R. H., Fine, A., Lichtler, A., Rowe, D. W., and Smith, B. D., Transforming-growth-factor-β activation elements in the distal promoter regions of the rat α1 type I collagen gene. Biochem. J.280 (1991) 157–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Romaris, M., Heredia, A., Molist, A., and Bassols, A., Differential effect of transforming growth factor β on proteoglycan synthesis in human embryonic lung fibroblasts. Biochim. biophys. Acta1093 (1991) 229–233.

    Article  CAS  PubMed  Google Scholar 

  41. Ruoslahti, E., Structure and biology of proteoglycans. A. Rev. Cell Biol.4 (1988) 229–255.

    Article  CAS  Google Scholar 

  42. Ruoslahti, E., and Yamaguchi, Y., Proteoglycans as modulators of growth factor activities. Cell64 (1991) 867–869.

    Article  CAS  PubMed  Google Scholar 

  43. Saitta, B., Timpl, R., and Chu, M-L., Human α2(VI) collagen gene. Heterogeneity at the 5′ untranslated region generated by an alternate exon. J. biol. Chem.267 (1992) 6188–6196.

    Article  CAS  PubMed  Google Scholar 

  44. Saksela, O., Moscatelli, D., Sommer, A., and Rifkin, D. B., Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol.107 (1988) 743–751.

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt, G., Robenek, H., Harrach, B., Glössl, I., Nolte, V., Hörmann, H., Richter, H., and Kresse, H., Interaction of the small dermatan sulfate proteoglycan from fibroblasts with fibronectin. J. Cell Biol.104 (1987) 1683–1691.

    Article  CAS  PubMed  Google Scholar 

  46. Scott, J. E., and Orford, C. R., Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region. Biochem. J.197 (1981) 213–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shaw, G., and Kamen, R., A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation Cell46 (1986) 659–667.

    Article  CAS  PubMed  Google Scholar 

  48. Simionescu, D., Iozzo, R. V., and Kefalides, N. A., Bovine pericardial proteoglycan: Biochemical, immunochemical and ultrastructural studies. Matrix9 (1989) 301–310.

    Article  CAS  PubMed  Google Scholar 

  49. Stevenson, B. J., Hagenbuechle, O., and Wellauer, P. K., Sequence organization and transcriptional regulation of the mouse elastase II and trypsin gene. Nucl. Acids Res.14 (1986) 8307–8330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van den Hoff, A., Stromal involvement in malignant growth. Adv. Cancer Res.50 (1988) 158–196.

    Google Scholar 

  51. Vigny, M., Ollier-Hartmann, M. P., Lavigne, M., Fayein, N., Jeanny, J. C., Laurent, M., and Courtois, Y. Specific binding of basic fibroblast growth factor to basement membrane-like structures and to purified heparan sulfate proteoglycan of the EHS tumor. J. cell. Physiol.137 (1989) 321–328.

    Article  Google Scholar 

  52. Vogel, K. G., Paulsson, B. M., and Heinegård, D., Specific inhibition of type I and II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J.223 (1984) 587–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamaguchi, Y., and Rouslahti, E., Expression of human proteoglycan in Chinese ovary cells inhibits cell proliferation. Nature336 (1988) 244–246.

    Article  CAS  PubMed  Google Scholar 

  54. Yamaguchi, Y., Mann, D. M., and Ruoslahti, E., Negative regulation of transforming growth factor-β by the proteoglycan decorin. Nature346 (1990) 281–284.

    Article  CAS  PubMed  Google Scholar 

  55. Yeo, T-K., Brown, L., and Dvorak, H. F., Alterations in proteoglycan synthesis common to healing wounds and tumors. Am. J. Path.138 (1991) 1437–1450.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zimmermann, D. R., and Ruoslahti, E., Multiple domains of the large fibroblast proteoglycan, versican. EMBO J.8 (1989) 2975–2981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iozzo, R.V., Cohen, I. Altered proteoglycan gene expression and the tumor stroma. Experientia 49, 447–455 (1993). https://doi.org/10.1007/BF01923588

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923588

Key words

Navigation