Skip to main content
Log in

Genetic and environmental influences on reactive and spontaneous locomotor activities in rats

  • Multi-Author Review
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Paired groups of rats (derived from divergent, selective breeding or living in divergent environmental conditions) were compared with regard to locomotor activities. Intrapair differences were found to vary non-systematically, depending upon whether the rats were initially exposed to a test-environment with or without a slight environmental modification (reactive activities), or were allowed to habituate extensively to the environment (spontaneous activity). Since the behavioral patterns were found to represent distinct entities, this pointed to the necessity of differentiating clearly between spontaneous and reactive activities and indicated, once again, that both genetic and environmental influences are important in these behaviors and must be taken into account. Accepting and controlling for these variables makes it possible to use the factor of individual differences in laboratory animal behavior to advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baettig, K., Driscoll, P., Schlatter, I., and Uster, H. J., Effects of nicotine on the exploratory locomotion patterns of female Roman high- and low-avoidance rats. Pharmac. Biochem. Behav.4 (1976) 435–439.

    Article  Google Scholar 

  2. Bellin, J. S., and Sorrentino, J. M., Kinetic characteristics of monoamine oxidase and serum cholinesterase in several related rat strains. Biochem. Genet.11 (1974) 309–317.

    Article  CAS  PubMed  Google Scholar 

  3. Bhargava, H. N., Effect of cyclo(leucyl-glycine) on3H-spiroperidol binding in the corpus striatum and hypothalamus of spontaneously hypertensive rats. Eur. J. Pharmac.100 (1984) 109–112.

    Article  CAS  Google Scholar 

  4. Brush, F. R., Baron, S., Froelich, J. C., Ison, J. R., Pellegrino, L. J., Phillips, D. S., Sakellaris, P. C., and Williams, V. N., Genetic differences in avoidance learning by Rattus norvegicus: escape/avoidance responding, sensitivity to electric shock, discrimination learning and open-field behavior. J. comp. Psychol.99 (1985) 60–73.

    Article  CAS  PubMed  Google Scholar 

  5. Carlson, J. N., and Glick, S. D., Cerebral lateralization as a source of interindividual differences in behavior. Experientia45 (1989) 788–798.

    Article  CAS  PubMed  Google Scholar 

  6. Chiu, P., Rajakumar, G., Chiu, S., Kwan, C.-Y., and Mishra, R. K., Enhanced3H-spiroperidol binding in striatum of spontaneously hypertensive rat (SHR). Eur. J. Pharmac.82 (1982) 243–244.

    Article  CAS  Google Scholar 

  7. Dalrymple-Alford, J. C., and Benton, D., Activity differences of individually-and group-housed male and female rats. Anim. Learn. Behav.9 (1981) 50–55.

    Article  Google Scholar 

  8. D'Angio, M., Serrano, A., Driscoll, P., and Scatton, B., Stressful environmental stimuli increase extracellular DOPAC levels in the prefrontal cortex of hypoemotional (RHA/Verh) but not hyperemotional (RLA/Verh) rats: An in vivo voltametric study. Brain Res.451 (1988) 237–247.

    Article  CAS  PubMed  Google Scholar 

  9. Delini-Stula, A., and Hunn, C., Neophobia in spontaneous hypertensive (SHR) and normotensive (WKY) rats. Behav. Neural Biology43 (1985) 727–728.

    Article  Google Scholar 

  10. Dickinson, S. L., Gadie, B., and Tulloch, I. F., Behavioral activation induced by specific and selective alpha2-adrenoceptor antagonists in the rat. Br. J. Pharmac.91 (1987) 415P.

    Google Scholar 

  11. Domjan, M., Schorr, R., and Best, M., Early environmental influences on conditioned and unconditioned ingestional and locomotor behaviors. Devl. Psychobiol.10 (1977) 499–506.

    Article  CAS  Google Scholar 

  12. Driscoll, P., and Baettig, K., Behavioral, emotional and neurochemical profiles of rats selected for extreme differences in active, two-way avoidance performance, in: Genetics of the Brain, pp. 95–123. Ed. I. Lieblich. Elsevier, Amsterdam 1982.

    Google Scholar 

  13. Driscoll, P., Genetic models in brain and behavior research, Part I. Experientia44 (1988) 463–464.

    Article  CAS  PubMed  Google Scholar 

  14. Driscoll, P., Dedek, J., D'Angio, M., Claustre, Y., and Scatton, B., A genetically-based model for divergent stress responses: behavioral, neurochemical and hormonal aspects, in: Farm Animals in Biomedical Research, pp. 97–107. Eds E. V. Pliska and G. Stranzinger. Verlag Paul Parey, Hamburg 1990.

    Google Scholar 

  15. Duetsch, H. R., and Baettig, K., Psychogenetische Unterschiede (RHA- vs. RLA-Ratten) im Vermeidungslernen, Offenfeldverhalten, Hebb-Williams-Intelligenztest und bei der Labyrinthexploration. Z. exp. angew. Psychol.24 (1977) 230–243.

    Google Scholar 

  16. Einon, D., Morgan, B., and Sahakian, B.. The development of intersession habituation and emergence in socially reared and isolated rats. Devl. Psychobiol.8 (1976) 553–560.

    Article  Google Scholar 

  17. File, S. E., and Tucker, J. C., Behavioral consequences of antidepressant treatment in rodents. Neurosci. Biobehav. Rev.10 (1986) 123–134.

    Article  CAS  PubMed  Google Scholar 

  18. Fuller, R. W., Hemrick-Luecke, S. K., Wong, D. T., Pearson, D. V., Trelkeld, P. G., and Hynes, M. D., Altered behavioral response to a D2 agonist, LY 141865, in spontaneously hypertensive rats exhibiting biochemical and endocrinological responses similar to those in normotensive rats. J. Pharmac. exp. Ther.227 (1983) 354–359.

    CAS  Google Scholar 

  19. Garzon, J., Fuentes, J., and Del Rio, J., Antidepressants selectively antagonize the hyperactivity induced in rats by long-term isolation. Eur. J. Pharmac.59 (1979) 293–296.

    Article  CAS  Google Scholar 

  20. Gentsch, C., Lichtsteiner, M., and Feer, H., Openfield and elevated plus-maze: a behavioural comparison between spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats and the effects of chlordiazepoxide. Behav. Brain Res.25 (1987) 101–107.

    Article  CAS  PubMed  Google Scholar 

  21. Gentsch, C., Lichtsteiner, M., and Feer, H., Behavioural comparisons between individually- and group-housed male rats: effects of novel environments and diurnal rhythm. Behav. Brain Res.6 (1982) 93–100.

    Article  CAS  PubMed  Google Scholar 

  22. Gentsch, C., Lichtsteiner, M., and Feer, H., Locomotor activity, defecation score and corticosterone levels during an openfield exposure: a comparison among individually- and group-housed rats, and genetically selected rat lines. Physiol. Behav.27 (1981) 183–186.

    Article  CAS  PubMed  Google Scholar 

  23. Gentsch, C., Lichtsteiner, M., Kraeuchi, K., and Feer, H., Different reaction patterns in individually and socially reared rats during exposures to novel environments. Behav. Brain Res.4 (1982) 45–54.

    Article  CAS  PubMed  Google Scholar 

  24. Gentsch, C., Lichtsteiner, M., Driscoll, P., and Feer, H., Differential hormonal and physiological responses to stress in Roman high- and low-avoidance rats. Physiol. Behav.28 (1982) 259–263.

    Article  CAS  PubMed  Google Scholar 

  25. Gentsch, C., Lichtsteiner, M., and Feer, H., Individual housing of rats causes divergent changes in spontaneous and reactive activity. Experientia37 (1981) 61–62.

    Article  Google Scholar 

  26. Gentsch, C., Lichtsteiner, M., Frischknecht, H. R., Feer, H., and Siegfried, B., Isolation-induced locomotor hyperactivity and hypoalgesia in rats are prevented by handling and reversed by resocialization. Physiol. Behav.43 (1988) 13–16.

    Article  CAS  PubMed  Google Scholar 

  27. Gentsch, C., Lichtsteiner, M., and Feer, H., Genetic and environmental influences on behavioral and neurochemical aspects of emotionality in rats. Experientia44 (1988) 482–490.

    Article  CAS  PubMed  Google Scholar 

  28. Gentsch, C., Lichtsteiner, M., Driscoll, P., and Feer, H.,3H-spiroperidol binding in striatal tissue of Roman high avoidance (RHA/Verh) and Roman low avoidance (RLA/Verh) rats. Neurosci. Lett. Suppl.22 (1985) 549.

    Google Scholar 

  29. Gentsch, C., Lichtsteiner, M., Frischknecht, H. R., Feer, H., and Siegfried, B., Novelty-induced analgesia and learning in six strains of rats. Experientia44 (1988) A17.

    Google Scholar 

  30. Gentsch, C., Lichtsteiner, M., and Feer, H., Behavioral comparisons between RHA/Verh and RLA/Verh rats during the light/dark cycle. Experientia41 (1985) 1218.

    Google Scholar 

  31. Glick, S. D., Shapiro, R. M., Drew, K. L., Hinds, P. A., and Carlson, J. N., Differences in spontaneous and amphetamine-induced rotational behavior, and in sensitivities to amphetamine, among Sprague-Dawley derived rats from different sources. Physiol. Behav.38 (1986) 67–70.

    Article  CAS  PubMed  Google Scholar 

  32. Guisado, E., Fernandez-Tome, P., Garzon, J., and Del Rio, J., Increased dopamine receptor binding in the striatum of rats after prolonged isolation. Eur. J. Pharmac.65 (1980) 463–464.

    Article  CAS  Google Scholar 

  33. Helmeste, D. M., Seeman, P., and Coscina, D. V., Relation between brain catecholamine receptors and dopaminergic stereotypy in rat strains. Eur. J. Pharmac.69 (1981) 465–470.

    Article  CAS  Google Scholar 

  34. Helmeste, D. M., Spontaneous and apomorphine-induced locomotor changes parallel dopamine receptor differences in two rat strains. Pharmac. Biochem. Behav.19 (1983) 153–155.

    Article  CAS  Google Scholar 

  35. Hendley, E. D., Wessel, D. J., Atwater, D. G., Gellis, J., Whitehorn, D., and Low, W. C., Age, sex and strain differences in activity and habituation in SHR and WKY rats. Physiol. Behav.34 (1985) 379–383.

    Article  CAS  PubMed  Google Scholar 

  36. Hendley, E. D., Atwater, D. G., Myers, M. M., and Whitehorn, D., Dissociation of genetic hyperactivity and hypertension in SHR. Hypertension5 (1982) 211–217.

    Article  Google Scholar 

  37. Knardahl, S., and Sagvolden, T., Openfield behavior of spontaneously hypertensive rats. Behav. Neural Biol.27 (1979) 187–200.

    Article  CAS  PubMed  Google Scholar 

  38. Kraeuchi, K., Wirz-Justice, A., Willener, R., Campell, I. C., and Feer, H., Spontaneous hypertensive rats: Behavioral and corticosterone response depend on circadian phase. Physiol. Behav.30 (1983) 35–40.

    Article  CAS  Google Scholar 

  39. Kreisberg, J. I., and Karnovsky, M. J., Focal glomerular sclerosis in the Fawn-hooded rat. Am. J. Path.92 (1978) 637–645.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuijpers, M. H. M., and Gruys, E., Spontaneous hypertension and hypertensive renal disease in the Fawn-hooded rat. Br. J. exp. Path.65 (1984) 181–190.

    CAS  Google Scholar 

  41. Le Fur, G., Guilloux, F., Kabouche, M., Mitrani, N., Ferris, O., and Uzan, A., Central dopaminergic neurons during development of genetic and DOCA-salt hypertension in the rat. Dev. Brain Res.1 (1981) 153–163

    Article  Google Scholar 

  42. Lozovsky, D., Saller, C. F., and Kopin, I. J., Dopamine receptor binding is increased in diabetic rats. Science214 (1981) 1031–1033.

    Article  CAS  PubMed  Google Scholar 

  43. Magro, A. M., Rudofsky, U. H., Gilboa, N., and Seegal, R., Increased catecholamine output in the hypertensive Fawn-hooded rat. Lab. Anim. Sci.36 (1986) 646–649.

    CAS  PubMed  Google Scholar 

  44. Martin, J. R., Overstreet, D. H., Driscoll, P., and Baettig, K., Effects of scopolamine, pilocarpine and oxotremorine on the exploratory behavior of two psychogenetically selected lines of rats in a complex maze. Psychopharmacology72 (1981) 135–142.

    Article  CAS  PubMed  Google Scholar 

  45. Martin, J. R., Oettinger, R., Driscoll, P., Buzzi R, and Baettig, K., Effects of chlordiazepoxide and imipramine on maze patrolling within two different maze configurations by psychogenetically selected lines of rats. Psychopharmacology78 (1982) 58–62.

    Article  CAS  PubMed  Google Scholar 

  46. Martin, J. R., and Quock, R. M., Pharmacological characterization of apomorphine-induced hypothermia in the spontaneously hypertensive rat. Life Sci.35 (1984) 929–936.

    Article  CAS  PubMed  Google Scholar 

  47. McCarty, R., and Kopin, I. J., Patterns of behavioral development in spontaneously hypertensive and Wistar Kyoto normotensive controls. Devl. Psychobiol.12 (1979) 239–243.

    Article  CAS  Google Scholar 

  48. Merali, Z., Ahmed, Q., and Veitch, J., Behavioral and neurochemical profile of the spontaneously diabetic Wistar BB rat. Behav. Brain Res.29 (1988) 51–60.

    Article  CAS  PubMed  Google Scholar 

  49. Moser, M.-B., Moser, E. I., Wultz, B., and Sagvolden, T., Component analyses differentiate between exploratory behavior of spontaneously hypertensive rats and Wistar Kyoto rats in a two-compartment free-exploration open field. Scand. J. Psychol.29 (1988) 200–206.

    Article  CAS  PubMed  Google Scholar 

  50. Nil, R., and Baettig, K., Spontaneous maze ambulation and Hebb-Williams learning in Roman high-avoidance and Roman low-avoidance rats. Behav. Neural Biol.33 (1981) 465–475.

    Article  CAS  PubMed  Google Scholar 

  51. Okamoto, K., and Aoki, K, Development of a strain of spontaneously hypertensive rats. Jap. Circul. J.27 (1963) 282–293.

    Article  CAS  Google Scholar 

  52. O'Neill, R. D., and Fillenz, M., Simultaneous monitoring of dopamine release in rat frontal cortex, nucleus accumbens and striatum: effects of drugs, circadian changes and correlations with motor activity. Neuroscience16 (1985) 49–55.

    Article  CAS  PubMed  Google Scholar 

  53. Overstreet, D. H., Russell, R. W., Crocker, A. D., Gillin, J. Ch., and Janowsky, D. S., Genetic and pharmacological models of cholinergic supersensitivity and affective disorders. Experientia44 (1988) 465–472.

    Article  CAS  PubMed  Google Scholar 

  54. Overstreet, D. H., and Crocker, A. D., Neurochemical imbalances in lines of rats differing in cholinergic sensitivity. Psychopharmacology96 (1988) 76.

    Google Scholar 

  55. Pappas, B. A., Peters, D. A. V., Saari, M., Sobrian, S. K., and Minch, E., Neonatal 6-hydroxydopamine sympathectomy in normotensive and spontaneously hypertensive rat. Pharmac. Biochem. Behav.2 (1974) 381–386.

    Article  CAS  Google Scholar 

  56. Rosecrans, J. A., and Adams, M. D., Brain 5-hydroxytryptamine correlates of behavior: studies involving spontaneously hypertensive (SHR) and normotensive Wistar rats. Pharmac. Biochem. Behav.5 (1976) 559–564.

    Article  CAS  Google Scholar 

  57. Rowland, N., Joyce, J. N., and Bellush, L. L., Stereotyped behavior and diabetes mellitus in rats: reduced behavioral effects of amphetamine and apomorphine and reduced in vivo brain binding of3H-spiroperidol. Behav. Neurosci.99 (1985) 831–841.

    Article  CAS  PubMed  Google Scholar 

  58. Rudofsky, U. H., and Magro, A. M., Spontaneous hypertension in Fawn-hooded rats. Lab. Anim. Sci.32 (1981) 389–391.

    Google Scholar 

  59. Satinder, K. P., and Hill, K. D., Effects of genotype and postnatal experience on activity, avoidance, shock threshold, and open-field behavior of rats. J. comp. physiol. Psychol.86 (1974) 363–374.

    Article  CAS  PubMed  Google Scholar 

  60. Seale, T. W., McLanahan, K., Johnson, P., and Carnex, J. M., Systematic comparison of apomorphine-induced behavioral changes in two mouse strains with inherited differences in brain dopamine receptors. Pharmac. Biochem. Behav.21 (1984) 237–244.

    Article  CAS  Google Scholar 

  61. Speciale, S. G., Miller, J. D., McMillen, B. A., and German, D. C., Activation of specific central dopamine pathways: locomotion and footshock, Brain Res. Bull.16 (1986) 33–38.

    Article  CAS  PubMed  Google Scholar 

  62. Spirduso, W. W., Gilliam, P., and Wilcox, R. E., Speed of movement initiation performance predicts differences in3H-spiroperidol receptor binding in normal rats. Psychopharmacology83 (1984) 205–209.

    Article  CAS  PubMed  Google Scholar 

  63. Syme, L. A., Social isolation at weaning: Some effects on two measures of activity. Anim. Learn. Behav.1 (1973) 161–163.

    Article  Google Scholar 

  64. Tobach, E., De Santis, J. L., and Zucker, M. B., Platelet storage pool disease in hybrid rats. J. Hered.75 (1984) 15–18.

    Article  CAS  PubMed  Google Scholar 

  65. Trippodo, N. C., and Frohlich, E. D., Similarities of genetic (spontaneous) hypertension. Man and rat. Circulation Res.48 (1981) 309–319.

    Article  CAS  PubMed  Google Scholar 

  66. Tschopp, T. B., and Zucker, M. B., Hereditary defect in platelet function in rats. Blood40 (1972) 217–226.

    Article  CAS  PubMed  Google Scholar 

  67. Uster, H. J., Baettig, K., and Naegeli, H. N., Effects of maze geometry and experience on exploratory behavior in the rat. Anim. Learn. Behav.4 (1976) 84–88.

    Article  Google Scholar 

  68. Watanabe, S., and Seeman, P., D2 dopamine receptor density in rat striatum over 24 hours: Lack of detectable changes. Biol. Psychiatry19 (1984) 1249–1253.

    CAS  PubMed  Google Scholar 

  69. Wolf, M. D., Wilcox, R. E., Riffee, W. H., and Abraham, L. D., Strain differences in dopamine receptor function and the initiation of movement. Pharmac. Biochem.13 (1980) 5–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentsch, C., Lichtsteiner, M. & Feer, H. Genetic and environmental influences on reactive and spontaneous locomotor activities in rats. Experientia 47, 998–1008 (1991). https://doi.org/10.1007/BF01923335

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923335

Key words

Navigation